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Data assimilation

@ Data assimilation is a technique for combining information
such as observational and background data with numerical
models to obtain the best estimate of state of a system (initial
condition).

® Numerical weather prediction is essentially an IVP: given
initial conditions, forecast atmospheric evolution.

@ Other application areas include hydrology, oceanography,
environmental science, data analytics, sensor networks. . .

@ Variational assimilation is used to find the optimal analysis
that minimises a specific cost function.
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Four-dimensional Variational Assimilation (4D-Var)

Minimise cost function

J(x0) = (x0 = x5) "B} (x0 — x5) + Z(’H(Xi) —yi) T RTH(H(xi) — i)

i=0
with constraint x; = Mg_,iXg.
analysis X0
background (short-term forecast) x5
observations y
observation operator H
model dynamics Xit1 = M(x;)
background error covariance matrix B
observation error covariance matrix R
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Incremental 4D-Var

@ Linearise H, M using the tangent linear hypothesis and solve
resulting unconstrained optimisation problem iteratively.

@ Hessian of the cost function
H=B"1+HTRH
incorporates the tangent linear operator M and its adjoint.

@ Action of applying H to a vector is available, but expensive
(involves both forward and backward model solves).

@ AIM: construct a limited-memory approximation to H™! using
only matrix-vector multiplication for use as preconditioning in
a Gauss-Newton method.
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Hessian system

@ Linear system (within a Gauss-Newton method):
H(uk)éuk = G(uk)

@ Solve using Preconditioned Conjugate Gradient iteration
(needs only Hv).

@ Precondition based on the background covariance matrix:
H— (§1/2)TH§1/2 — |+ (§1/2)Ti_\IT/I_-\\)—1//_\I§1/2

@ Eigenvalues of H are usually clustered in a narrow band above
one, with few eigenvalues distinct enough to contribute
noticeably to the Hessian value.

[HABEN ET AL., COMPUTERS & FLUIDS 46 (2011)]

@ H amenable to limited-memory approximation.
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Limited-memory approximation

@ Find n. leading eigenvalues and orthonormal eigenvectors
using the Lanczos method (needs only Hv).

@ Construct approximation

H~I+ Z()\, — 1)u,-u,-T
i=1

@ Easy to evaluate matrix powers:

Ne
HP ~ | + Z()\f’ —1uju/
i=1

Alison Ramage, University of Strathclyde Multilevel preconditioner for data assimilation with 4D-Var



Second level preconditioning

@ IDEA: Construct a multilevel approximation to H~! based on
a sequence of nested grids.

@ Discretise evolution equation on a grid with m 4 1 nodes
(level 0) to represent Hessian Hp

o Grid level k contains m; = m/2% + 1 nodes.

® @ & L4 —0—0—0—0 level

® L L L ® level 1

e & ©® level 2

@ ldentity matrix /, on grid level k.
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Grid transfers with ‘“correction”

o Grid transfer based on piecewise cubic splines:

o Restriction matrix Rf from k = f to k = c.
@ Prolongation matrix Pf from k =cto k =f.

@ Construct new operators which transfer a matrix between a
course grid level ¢ and a fine grid level f.

@ From coarse to fine:
Acyr = PE(Ac — I)RE + I
o From fine to coarse:

Arosc = RI(Ar — If)PF + I
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Outline of multilevel concept

@ Given a symmetric positive definite operator Ap available on
the finest grid level in matrix-vector
product form:

© represent Ag on the coarsest grid level;

© use a local preconditioner to improve the eigenvalue
distribution;

© build a limited memory approximation to its inverse using the
Lanczos method (which forms the basis of the local
preconditioner at the next coarsest level);

© move up one grid level and repeat.
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Multilevel algorithm for H~!

@ Represent Hy at a given level (k, say):
Hosk = RY(Ho — o) P& + I
@ Precondition to improve eigenvalue spectrum:
Floosi = (B£+1)THO—>kB/I:+1

@ Find ny eigenvalues/eigenvectors of I:Io_>k using the Lanczos
method.

@ Approximate I:IO__I/kz:

N
~—1/2
At~y (

i=1

Ek
|
.

N———
£
[

=4
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Preconditioners

o Construct B,’f“ on level k 4+ 1, apply on level k.
@ On coarsest grid, level kK + 1 does not exist so set Bf“ = I.
@ For other levels, construct preconditioners recursively:

k+1 _ [ pk+2y—1/2 k+1T _ [p=1/2 pk+2T
B, = | Byl Ho ki L By = |HoZki1Brii o

@ Square brackets represent projection to the correct grid level
using “corrected” grid transfers, e.g.

(A1l = R Akt — 1) Pig + i
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Algorithm

@ use N = (ng,ni,...,nc) eigenvalues at each level

[A, U]=mlevd(Hoy, Ne)
for k=k,ke—1,...,0
compute by the Lanczos method
and store in memory
{)\L, U,’(}, = 1, R of H0_>k
using preconditioner B,’(H'1
end

@ storage:
_ 1 Nk 1 Nk —1 1 no
= Mo o A X A A A

A
_ 1 Nk 1 Nke—1 1 no
U = (U, Uk Ui g, Ul Uy U]
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@ Test using 1D Burgers' equation with initial condition

f(x) =0.1+0.35 [l—l—sin <47rx+3§>}, 0<x<1

@ 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, and 0.7 in [0, 1].

@ Multilevel preconditioning with four grid levels:

k 0 1 2 3
grid points | 401 201 101 51
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Assessing approximation accuracy

@ Riemannian distance:

n 1/2
5(A,B) = ||In(B~A)| - = (Z ln2/\,->

@ Compare eigenvalues of H~1 and A= on the finest grid level
k = 0 using ~

S(HTL, H™Y)

D=5

@ Vary number of eigenvalues chosen on each grid level

Ne = (ng, n1, n2, n3)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)

1 T T T T T \”
09 1

08 §
07 f F
@
@

06

05 ’
04 F ‘
@

03

02} f
0.:— ‘ $ |

N, = (64,0,0,0)
D =2.98e — 4

Alison Ramage, University of Strathclyde Multilevel preconditioner for data assimilation with 4D-Var



Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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@ Fixed memory ratio R = ok
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PCG iteration for one Newton step

@ measurement units

@ memory: length of vector on finest grid L
¢ cost: cost of HVP on finest grid HVP

Preconditioner | # CG iterations | storage cost
none 57 0L 57 HVP
MG(400,0,0,0) 1 400 L | 402 HVP
MG(4,8,16,32) 4 16 L 34 HVP
MG(0,8,16,32) 5 12 L 14 HVP
MG(0,0,16,32) 8 8L 10 HVP
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Solve cost measured in number of HVPs

5
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Cost including building preconditioner
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Hessian decomposition

@ partition domain into subregions and compute local Hessians

H' such that ,

H(u)=1+> (H'(u)-1)

=1

o fewer eigenvalues required for limited-memory representation
of each H'

@ local Hessians can be computed in parallel

@ H' need not be computed at finest grid level:

L

Hic(ur) = le+ > (Hi(ui) = li)

=1

@ could run local rather than global model
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Practical approach: Version 1

Compute limited-memory approximations to local
sensor-based Hessians on level | using n; eigenpairs.

Assemble these to form H,, then apply mlevd to H, based on
a fixed Ne.

Local Hessians cheaper to compute.

Additional user-specified parameter(s) /, n; needed.

@ More memory required as local Hessians must also be stored.
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Version 1: cost including building preconditioner

@ Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines).
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Practical approach: version 2

@ Can reduce memory requirements further by using a multilevel
approximation of each limited-memory local Hessian on level /
using n; eigenpairs.

@ Approximate local Hessians by applying mlevd to local inverse
Hessians based on N..

@ Assemble these to form a reduced-memory assembled Hessian
HIm.

@ Use mlevd again on H]™ based on N,.
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Version 2: cost including building preconditioner

@ Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines) with (8,4,0,0) MG approx.
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Conclusions and next steps

@ Similar results with other configurations (e.g. moving sensors,
different initial conditions).

@ Multilevel preconditioning looks promising for constructing a
good limited-memory approximation to H™1.

@ The balance between restrictions on memory/cost limitations
may vary between particular applications.

@ |dentifying globally appropriate values for (ng, n1, n2, n3) and
other parameters is tricky, but “rules of thumb” can be
developed.

@ Future investigations:
@ problems in higher dimensions;
@ extension to other operators;
o applications for other sensor systems.
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It is sometimes nice in Scotland. ..
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