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Data assimilation

• Numerical weather prediciton is an IVP: given initial
conditions, forecast atmospheric evolution.

• Data assimilation is a technique for combining
information such as observational and background data
with numerical models to obtain the best estimate of
state of a system (initial condition).

• Other application areas include hydrology,
oceanography, environmental science, data analytics,
sensor networks. . .

• Variational assimilation is used to find the optimal
analysis that minimises a specific cost function.
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Motivation
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Data assimilation problem

• Evolution process:

∂φ

∂t
= F (φ) + f, t ∈ (0, T ),

φ|t=0 = u, φ, u ∈ X, φ ∈ Y

true initial state ū
true state evolution φ̄

observation operator Co : Y → Yo
observations y = Coφ̄+ ξo

background function ub = ū+ ξb
background error ξb
observation error ξo
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Discrete least-squares problem

• observations distributed within time interval (t0, tn)

• find u which minimises

J(u) =
1

2
(u− ub)

TV −1

b (u− ub)

+
1

2

N
∑

i=0

(Co(ui)− yi)
TV −1

o (Co(ui)− yi)

subject to ui, i = 1, . . . , N satisfying

ui+1 = Mi,i+1(ui), i = 0, . . . , N − 1.

• discrete nonlinear evolution operator Mi,i+1
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Incremental 4D-Var

• Rewrite as an unconstrained minimisation problem
using Lagrange’s method.

• Incremental approach: linearise evolution operator and
solve linearised problem iteratively.

• This involves a tangent linear model (TLM) and its
adjoint.

• Each iteration requires one forward solution of the TLM
equations and one backward solution of the adjoint
equations.
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Hessian matrix

• Hessian of the cost function:

H = V −1

b +RTCT
o V

−1
o CoR.

• Discrete tangent linear operator R and its adjoint.

• H is often too large to be stored in memory.

• Action of applying H to a vector is available,
but expensive:

• involves both forward and backward solves with the
linearised evolution operator and its adjoint.
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Approximating the inverse Hessian

Why approximate H−1?

• H−1 represents an approximation of the Posterior
Covariance Matrix (PCM).

• The PCM can be used to find confidence intervals and
carry out a posteriori error analysis.

• H−1/2 can be used in ensemble forecasting.

• H−1, H−1/2 can be used for preconditioning in a
Gauss-Newton method (focus of this talk).

AIM: construct a limited-memory approximation to H−1 using

only matrix-vector multiplication.
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Return to 4D-Var

• Linear system (within a Gauss-Newton method):

H(uk)δuk = G(uk)

Hessian of the cost function H
gradient of the cost function G(uk)

• Solve using Preconditioned Conjugate Gradient
iteration (needs only Hv).

• Convergence depends on eigenvalues of the Hessian

H = V −1

b +RTCT
o V

−1
o CoR.

• Evaluating Hv is very expensive, so we need a good
preconditoner.
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First level preconditioning

• Use the background covariance matrix Vb.

• Projected Hessian:

H = (V
1/2
b )THV

1/2
b = I + (V

1/2
b )TRTCT

o V
−1
o CoRV

1/2
b

• Easy to recover H in the original space.

• Eigenvalues of H are usually clustered in a narrow
band above one, with few eigenvalues distinct enough
to contribute noticeably to the Hessian value.

• This makes H amenable to limited-memory
approximation.
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Correlation matrix

• inverse Hessian scaled to have unit diagonal
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Preconditioned correlation matrix

• after first level preconditioning has been applied
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Limited-memory approximation

• Find ne leading eigenvalues and orthonormal
eigenvectors using the Lanczos method.

• Construct approximation

H ≈ I +

ne
∑

i=1

(λi − 1)uiu
T
i

• Easy to evaluate matrix powers:

Hp ≈ I +

ne
∑

i=1

(λpi − 1)uiu
T
i
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Second level preconditioning

• Construct a multilevel approximation to H−1 based on
coarser grids (where it is cheaper to use Lanczos).

• Discretise evolution equation on a grid with m+ 1 nodes
(level 0) to represent Hessian H0

• Grid level k contains mk = m/2k + 1 nodes.

level 0

level 1

level 2

• Identity matrix Ik on grid level k.
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Grid transfers with “correction”

• Grid transfer based on piecewise cubic splines:

• Restriction matrix Rf
c from k = f to k = c.

• Prolongation matrix P c
f from k = c to k = f .

• Construct new operators which transfer a matrix
between a course grid level c and a fine grid level f .

• From coarse to fine:

Mc→f = P c
f (Mc − Ic)R

f
c + If

• From fine to coarse:

Mf→c = Rf
c (Mf − If )P

c
f + Ic
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Outline of multilevel algorithm

• Represent H0 at a given level (k, say):

H0→k = R0
k(H0 − I0)P

k
0 + Ik

• Precondition to improve eigenvalue spectrum:

H̃0→k = (Bk+1

k )TH0→kB
k+1

k

• Find nk eigenvalues/eigenvectors of H̃0→k using the
Lanczos method.

• Approximate H̃
−1/2
0→k :

H̃
−1/2
0→k ≈ Ik +

nk
∑

i=1

(

1√
λi

− 1

)

uiu
T
i .
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Preconditioners

• Construct Bk+1

k = Ik on level k + 1, apply on level k.

• On coarsest grid, level k + 1 does not exist so set

Bk+1

k = Ik.

• For other levels, construct preconditioners recursively:

Bk+1

k =
[

Bk+2

k+1
H̃

−1/2
0→k+1

]

→k
, Bk+1

k

T
=
[

H̃
−1/2
0→k+1

Bk+2

k+1

T
]

→k

• Square brackets represent projection to the correct grid
level using “corrected” grid transfers, e.g.

[Mk+1]→k = Rk+1

k (Mk+1 − Ik+1)P
k
k+1 + Ik
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Finest level

• We already have H0, so precondition to obtain

H̃0 = B1
0

T
H0B

1
0

• Find n0 eigenvalues/eigenvectors of H̃0 using the
Lanczos method.

• Approximate H̃−1

0
:

H̃−1

0
≈ Ik +

n0
∑

i=1

(

1

λi
− 1

)

uiu
T
i

• Recover projected inverse Hessian using

H−1

0
= B1

0H̃
−1

0
B1
0

T
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Algorithm

• use Ne = (n0, n1, . . . , nc) eigenvalues at each level

[Λ,U ]=mlpre(H0,n0, n1, . . . , nc)
for k = kc, kc − 1, . . . , 0

compute by the Lanczos method

and store in memory

{λik, U i
k}, i = 1, . . . , nk of H̃0→k

using preconditioners Bk,k+1 and BT
k,k+1

end

• storage:

Λ =
[

λ1kc , . . . , λ
nkc

kc
, λ1kc−1, . . . , λ

nkc−1

kc−1
, . . . , λ10, . . . , λ

n0

0

]

,

U =
[

U1
kc , . . . , U

nkc

kc
, U1

kc−1, . . . , U
nkc−1

kc−1
, . . . , U1

0 , . . . , U
n0

0

]

.
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Example

• Test using 1D Burgers’ equation with initial condition

f(x) = 0.1 + 0.35

[

1 + sin

(

4πx+
3π

2

)]

, 0 < x < 1

• 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45,
0.5, 0.55, 0.6, and 0.7 in [0, 1].

• Multilevel preconditioning with four grid levels:

k 0 1 2 3
grid points 401 201 101 51

Nottingham, December 2015 – p.21/35



Diagonal of H−1
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Assessing approximation accuracy

• Riemannian distance:

δ(A,B) =
∥

∥ln(B−1A)
∥

∥

F
=

(

n
∑

i=1

ln2λi

)1/2

• Compare eigenvalues of H−1 and H̃−1 on the finest grid
level k = 0 using

D =
δ(H−1, H̃−1)

δ(H−1, I)

• Vary number of eigenvalues chosen on each grid level

Ne = (n0, n1, n2, n3)
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Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)
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Fixed memory ratio

• Fixed memory ratio R =

kc
∑

k=0

nk
2k

R
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PCG iteration for one Newton step

• measurement units:

• memory: length of vector on finest grid L

• cost: cost of MVM on finest grid M

Preconditioner # CG iterations storage cost
none 57 0L 57M

MG(400,0,0,0) 1 400L 402M
MG(4,8,16,32) 4 16L 34M
MG(0,8,16,32) 5 12L 14M
MG(0,0,16,32) 8 8L 10M
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Practical approach: version 1

• Assemble local Hessians for each sensor to form Ha,
then apply mlpre to Ha.

• Local Hessians cheaper to compute:

• Potentially smaller area of influence.

• Could run local rather than global model.

• Compute local Hessians at level l.

• Use limited-memory form with nl eigenpairs.

• Can be computed in parallel.

• More memory required:

• Need to store additional local Hessians.
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Iteration counts
Preconditioner Ne l nl

P1 (200,0,0,0) 1 8
P2 (0,8,16,32) 1 8
P3 (0,4,8,16) 1 8

log(error) vs number of HVP
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Practical approach: version 2

• Can reduce memory requirements further.

• Approximate local Hessians by applying mlpre to local

inverse Hessians using N l
e.

• Construct a reduced-memory assembled Hessian Hrm
a .

• Use mlpre again on Hrm
a .
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Iteration counts
Preconditioner Ne l nl N l

e

P1 (200,0,0,0) 1 8 -
P2 (0,8,16,32) 1 8 -
P3 (0,4,8,16) 1 8 -
P4 (0,8,16,32) 1 8 (0,0,8,0)
P5 (0,8,16,32) 2 8 (0,0,0,8)

log(error) vs number of HVP
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Conclusions and next steps

• Similar results with other configurations (e.g. moving
sensors, different initial conditions).

• Multilevel preconditioning looks promising for
constructing a good limited-memory approximation to

H−1.

• The balance between restrictions on memory/cost
limitations may vary between particular applications.

• Identifying globally appropriate values for (n0, n1, n2, n3)
is tricky.
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Conclusions and next steps

• Similar results with other configurations (e.g. moving
sensors, different initial conditions).

• Multilevel preconditioning looks promising for
constructing a good limited-memory approximation to

H−1.

• The balance between restrictions on memory/cost
limitations may vary between particular applications.

• Identifying globally appropriate values for (n0, n1, n2, n3)
is tricky.

• Now ready for two dimensions!

Nottingham, December 2015 – p.34/35



It is sometimes nice in Scotland. . .
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