
A multilevel preconditioner for
data assimilation with 4D-Var

Alison Ramage and Kirsty Brown,
Mathematics and Statistics,

University of Strathclyde,
Glasgow, Scotland

Igor Gejadze,
National Research Institute of
Science and Technology for

Environment and Agriculture,
Montpelier, France

Nottingham, December 2015 – p.1/35

Data assimilation

• Numerical weather prediciton is an IVP: given initial
conditions, forecast atmospheric evolution.

• Data assimilation is a technique for combining
information such as observational and background data
with numerical models to obtain the best estimate of
state of a system (initial condition).

• Other application areas include hydrology,
oceanography, environmental science, data analytics,
sensor networks. . .

• Variational assimilation is used to find the optimal
analysis that minimises a specific cost function.

Nottingham, December 2015 – p.2/35

Motivation

Nottingham, December 2015 – p.3/35

Nottingham, December 2015 – p.4/35

Data assimilation problem

• Evolution process:

∂φ

∂t
= F (φ) + f, t ∈ (0, T),

φ|t=0 = u, φ, u ∈ X, φ ∈ Y

true initial state ū
true state evolution φ̄

observation operator Co : Y → Yo
observations y = Coφ̄+ ξo

background function ub = ū+ ξb
background error ξb
observation error ξo

Nottingham, December 2015 – p.5/35

Discrete least-squares problem

• observations distributed within time interval (t0, tn)

• find u which minimises

J(u) =
1

2
(u− ub)

TV −1

b (u− ub)

+
1

2

N
∑

i=0

(Co(ui)− yi)
TV −1

o (Co(ui)− yi)

subject to ui, i = 1, . . . , N satisfying

ui+1 = Mi,i+1(ui), i = 0, . . . , N − 1.

• discrete nonlinear evolution operator Mi,i+1

Nottingham, December 2015 – p.6/35

Incremental 4D-Var

• Rewrite as an unconstrained minimisation problem
using Lagrange’s method.

• Incremental approach: linearise evolution operator and
solve linearised problem iteratively.

• This involves a tangent linear model (TLM) and its
adjoint.

• Each iteration requires one forward solution of the TLM
equations and one backward solution of the adjoint
equations.

Nottingham, December 2015 – p.7/35

Hessian matrix

• Hessian of the cost function:

H = V −1

b +RTCT
o V

−1
o CoR.

• Discrete tangent linear operator R and its adjoint.

• H is often too large to be stored in memory.

• Action of applying H to a vector is available,
but expensive:

• involves both forward and backward solves with the
linearised evolution operator and its adjoint.

Nottingham, December 2015 – p.8/35

Approximating the inverse Hessian

Why approximate H−1?

• H−1 represents an approximation of the Posterior
Covariance Matrix (PCM).

• The PCM can be used to find confidence intervals and
carry out a posteriori error analysis.

• H−1/2 can be used in ensemble forecasting.

• H−1, H−1/2 can be used for preconditioning in a
Gauss-Newton method (focus of this talk).

AIM: construct a limited-memory approximation to H−1 using

only matrix-vector multiplication.

Nottingham, December 2015 – p.9/35

Return to 4D-Var

• Linear system (within a Gauss-Newton method):

H(uk)δuk = G(uk)

Hessian of the cost function H
gradient of the cost function G(uk)

• Solve using Preconditioned Conjugate Gradient
iteration (needs only Hv).

• Convergence depends on eigenvalues of the Hessian

H = V −1

b +RTCT
o V

−1
o CoR.

• Evaluating Hv is very expensive, so we need a good
preconditoner.

Nottingham, December 2015 – p.10/35

First level preconditioning

• Use the background covariance matrix Vb.

• Projected Hessian:

H = (V
1/2
b)THV

1/2
b = I + (V

1/2
b)TRTCT

o V
−1
o CoRV

1/2
b

• Easy to recover H in the original space.

• Eigenvalues of H are usually clustered in a narrow
band above one, with few eigenvalues distinct enough
to contribute noticeably to the Hessian value.

• This makes H amenable to limited-memory
approximation.

Nottingham, December 2015 – p.11/35

Correlation matrix

• inverse Hessian scaled to have unit diagonal

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Nottingham, December 2015 – p.12/35

Preconditioned correlation matrix

• after first level preconditioning has been applied

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Nottingham, December 2015 – p.13/35

Limited-memory approximation

• Find ne leading eigenvalues and orthonormal
eigenvectors using the Lanczos method.

• Construct approximation

H ≈ I +

ne
∑

i=1

(λi − 1)uiu
T
i

• Easy to evaluate matrix powers:

Hp ≈ I +

ne
∑

i=1

(λpi − 1)uiu
T
i

Nottingham, December 2015 – p.14/35

Second level preconditioning

• Construct a multilevel approximation to H−1 based on
coarser grids (where it is cheaper to use Lanczos).

• Discretise evolution equation on a grid with m+ 1 nodes
(level 0) to represent Hessian H0

• Grid level k contains mk = m/2k + 1 nodes.

level 0

level 1

level 2

• Identity matrix Ik on grid level k.

Nottingham, December 2015 – p.15/35

Grid transfers with “correction”

• Grid transfer based on piecewise cubic splines:

• Restriction matrix Rf
c from k = f to k = c.

• Prolongation matrix P c
f from k = c to k = f .

• Construct new operators which transfer a matrix
between a course grid level c and a fine grid level f .

• From coarse to fine:

Mc→f = P c
f (Mc − Ic)R

f
c + If

• From fine to coarse:

Mf→c = Rf
c (Mf − If)P

c
f + Ic

Nottingham, December 2015 – p.16/35

Outline of multilevel algorithm

• Represent H0 at a given level (k, say):

H0→k = R0
k(H0 − I0)P

k
0 + Ik

• Precondition to improve eigenvalue spectrum:

H̃0→k = (Bk+1

k)TH0→kB
k+1

k

• Find nk eigenvalues/eigenvectors of H̃0→k using the
Lanczos method.

• Approximate H̃
−1/2
0→k :

H̃
−1/2
0→k ≈ Ik +

nk
∑

i=1

(

1√
λi

− 1

)

uiu
T
i .

Nottingham, December 2015 – p.17/35

Preconditioners

• Construct Bk+1

k = Ik on level k + 1, apply on level k.

• On coarsest grid, level k + 1 does not exist so set

Bk+1

k = Ik.

• For other levels, construct preconditioners recursively:

Bk+1

k =
[

Bk+2

k+1
H̃

−1/2
0→k+1

]

→k
, Bk+1

k

T
=
[

H̃
−1/2
0→k+1

Bk+2

k+1

T
]

→k

• Square brackets represent projection to the correct grid
level using “corrected” grid transfers, e.g.

[Mk+1]→k = Rk+1

k (Mk+1 − Ik+1)P
k
k+1 + Ik

Nottingham, December 2015 – p.18/35

Finest level

• We already have H0, so precondition to obtain

H̃0 = B1
0

T
H0B

1
0

• Find n0 eigenvalues/eigenvectors of H̃0 using the
Lanczos method.

• Approximate H̃−1

0
:

H̃−1

0
≈ Ik +

n0
∑

i=1

(

1

λi
− 1

)

uiu
T
i

• Recover projected inverse Hessian using

H−1

0
= B1

0H̃
−1

0
B1
0

T

Nottingham, December 2015 – p.19/35

Algorithm

• use Ne = (n0, n1, . . . , nc) eigenvalues at each level

[Λ,U]=mlpre(H0,n0, n1, . . . , nc)
for k = kc, kc − 1, . . . , 0

compute by the Lanczos method

and store in memory

{λik, U i
k}, i = 1, . . . , nk of H̃0→k

using preconditioners Bk,k+1 and BT
k,k+1

end

• storage:

Λ =
[

λ1kc , . . . , λ
nkc

kc
, λ1kc−1, . . . , λ

nkc−1

kc−1
, . . . , λ10, . . . , λ

n0

0

]

,

U =
[

U1
kc , . . . , U

nkc

kc
, U1

kc−1, . . . , U
nkc−1

kc−1
, . . . , U1

0 , . . . , U
n0

0

]

.
Nottingham, December 2015 – p.20/35

Example

• Test using 1D Burgers’ equation with initial condition

f(x) = 0.1 + 0.35

[

1 + sin

(

4πx+
3π

2

)]

, 0 < x < 1

• 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45,
0.5, 0.55, 0.6, and 0.7 in [0, 1].

• Multilevel preconditioning with four grid levels:

k 0 1 2 3
grid points 401 201 101 51

Nottingham, December 2015 – p.21/35

Diagonal of H−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k=0
k=1
k=2
k=3

Nottingham, December 2015 – p.22/35

Assessing approximation accuracy

• Riemannian distance:

δ(A,B) =
∥

∥ln(B−1A)
∥

∥

F
=

(

n
∑

i=1

ln2λi

)1/2

• Compare eigenvalues of H−1 and H̃−1 on the finest grid
level k = 0 using

D =
δ(H−1, H̃−1)

δ(H−1, I)

• Vary number of eigenvalues chosen on each grid level

Ne = (n0, n1, n2, n3)

Nottingham, December 2015 – p.23/35

Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ne = (64, 0, 0, 0)
D = 2.98e− 4

Nottingham, December 2015 – p.24/35

Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ne = (8, 0, 0, 0)
D = 7.71e− 1

Nottingham, December 2015 – p.25/35

Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ne = (0, 6, 13, 14)
D = 3.95e− 1

Nottingham, December 2015 – p.26/35

Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ne = (0, 0, 29, 6)
D = 3.39e− 1

Nottingham, December 2015 – p.27/35

Fixed memory ratio

• Fixed memory ratio R =

kc
∑

k=0

nk
2k

R
0 5 10 15 20

di
st

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average minimum
true minimum
maximum n

0

doubling strategy

Nottingham, December 2015 – p.28/35

PCG iteration for one Newton step

• measurement units:

• memory: length of vector on finest grid L

• cost: cost of MVM on finest grid M

Preconditioner # CG iterations storage cost
none 57 0L 57M

MG(400,0,0,0) 1 400L 402M
MG(4,8,16,32) 4 16L 34M
MG(0,8,16,32) 5 12L 14M
MG(0,0,16,32) 8 8L 10M

Nottingham, December 2015 – p.29/35

Practical approach: version 1

• Assemble local Hessians for each sensor to form Ha,
then apply mlpre to Ha.

• Local Hessians cheaper to compute:

• Potentially smaller area of influence.

• Could run local rather than global model.

• Compute local Hessians at level l.

• Use limited-memory form with nl eigenpairs.

• Can be computed in parallel.

• More memory required:

• Need to store additional local Hessians.

Nottingham, December 2015 – p.30/35

Iteration counts
Preconditioner Ne l nl

P1 (200,0,0,0) 1 8
P2 (0,8,16,32) 1 8
P3 (0,4,8,16) 1 8

log(error) vs number of HVP

ensemble mean of NHV P

0 50 100 150 200 250

lo
g
1
0
o
f
d
ev
ia
ti
o
n
n
o
rm

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

none

P1

P2

P3

Nottingham, December 2015 – p.31/35

Practical approach: version 2

• Can reduce memory requirements further.

• Approximate local Hessians by applying mlpre to local

inverse Hessians using N l
e.

• Construct a reduced-memory assembled Hessian Hrm
a .

• Use mlpre again on Hrm
a .

Nottingham, December 2015 – p.32/35

Iteration counts
Preconditioner Ne l nl N l

e

P1 (200,0,0,0) 1 8 -
P2 (0,8,16,32) 1 8 -
P3 (0,4,8,16) 1 8 -
P4 (0,8,16,32) 1 8 (0,0,8,0)
P5 (0,8,16,32) 2 8 (0,0,0,8)

log(error) vs number of HVP

ensemble mean of NHV P

0 50 100 150 200 250

lo
g
1
0
o
f
d
ev
ia
ti
o
n
n
o
rm

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

none

P1

P2

P3

P4

P5

Nottingham, December 2015 – p.33/35

Conclusions and next steps

• Similar results with other configurations (e.g. moving
sensors, different initial conditions).

• Multilevel preconditioning looks promising for
constructing a good limited-memory approximation to

H−1.

• The balance between restrictions on memory/cost
limitations may vary between particular applications.

• Identifying globally appropriate values for (n0, n1, n2, n3)
is tricky.

Nottingham, December 2015 – p.34/35

Conclusions and next steps

• Similar results with other configurations (e.g. moving
sensors, different initial conditions).

• Multilevel preconditioning looks promising for
constructing a good limited-memory approximation to

H−1.

• The balance between restrictions on memory/cost
limitations may vary between particular applications.

• Identifying globally appropriate values for (n0, n1, n2, n3)
is tricky.

• Now ready for two dimensions!

Nottingham, December 2015 – p.34/35

It is sometimes nice in Scotland. . .

Nottingham, December 2015 – p.35/35

	
	Data assimilation
	Motivation
	
	Data assimilation problem
	Discrete least-squares problem
	Incremental 4D-Var
	Hessian matrix
	Approximating the inverse Hessian
	Return to 4D-Var
	First level preconditioning
	Correlation matrix
	Preconditioned correlation matrix
	Limited-memory approximation
	Second level preconditioning
	Grid transfers with ``correction''
	Outline of multilevel algorithm
	Preconditioners
	Finest level
	Algorithm
	Example
	Diagonal of H^{-1}
	Assessing approximation accuracy
	Eigenvalues of the inverse Hessian
	Eigenvalues of the inverse Hessian
	Eigenvalues of the inverse Hessian
	Eigenvalues of the inverse Hessian
	Fixed memory ratio
	PCG iteration for one Newton step
	Practical approach: version 1
	Iteration counts
	Practical approach: version 2
	Iteration counts
	Conclusions and next steps
	It is sometimes nice in Scotlandldots

