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Convection-Diffusion in 2D

—eViu(x,y) + w.Vu(z,y)
u(z, y)

f(z,y) In QeR?
g on 0N

divergence-free convective velocity (‘wind’) w
diffusion parameter e << 1
discretisation parameter h
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mesh Péclet number P}, = ,
€

Manchester, July 2005 — p.2/3!



Boundary Layers and Oscillations
e Galerkin finite element method
e(Vuh, V’Uh) -+ (W . Vfu,h,’vh) = (f, ’Uh) Vv, € V3,

e solution features:
exponential and characteristic boundary layers
e oscillations observed in discrete solutions for P, > 1

0.6

QOO
R
IILEETS
ZZZET

NJ |

Manchester, July 2005 — p.3/3!



Streamline Diffusion Method

streamline diffusion FEM, square bilinear elements

oh
e(Vuh, V’Uh) -+ (W - Vuyp, ’Uh) | || ” (W - Vup,w - V’Uh)
W
oh
= (f,vn) (f,w: Vo) Vo, € Vj,

Il
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Streamline Diffusion Method

streamline diffusion FEM, square bilinear elements

oh
e(Vuh, V’Uh) + (W - Vuyp, ’Uh) —+ m(w - Vup,w - V’Uh)
oh
= (foon) + o (fow e Vo) Vo, € Vi
o P,<1: 6=0 Galerkin FEM

o P,>1: 0= Streamline Diffusion

1 €
2 h
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Multigrid Ideas
e fine grid (h), coarse grid (2h)
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Multigrid Ideas
e fine grid (h), coarse grid (2h)

e decompose a grid function into components in two
subspaces

approximate inverse operator
for components in subspace 1

smoothing iteration
rapidly reduces error components in subspace 2
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Multigrid Ideas
e fine grid (h), coarse grid (2h)

e decompose a grid function into components in two
subspaces

approximate inverse operator
for components in subspace 1

smoothing iteration
rapidly reduces error components in subspace 2

e recursive process on nested grids
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Multigrid Ideas
fine grid (h), coarse grid (2h)

decompose a grid function into components in two
subspaces

approximate inverse operator
for components in subspace 1

smoothing iteration
rapidly reduces error components in subspace 2

recursive process on nested grids

optimal in the sense of obtaining convergence rate
iIndependent of
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Issues for Convection-Diffusion

e approximation: choice of discretisation

e oscillations on coarser grids?
e Qgrid transfer operators?
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Issues for Convection-Diffusion

e approximation: choice of discretisation

e oscillations on coarser grids?
e Qgrid transfer operators?

e smoothing: choice of relaxation method

e direction of flow?
e circular flows?
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Issues for Convection-Diffusion

e approximation: choice of discretisation

e oscillations on coarser grids?
e Qgrid transfer operators?

e smoothing: choice of relaxation method

e direction of flow?
e circular flows?

e multigrid can be implemented effectively for
convection-diffusion problems
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Convergence Analysis

e standard Poisson-type convergence analysis fails

e ideas for convection-diffusion less well-developed
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Convergence Analysis

e standard Poisson-type convergence analysis fails
e ideas for convection-diffusion less well-developed

e various successful approaches
e perturbation arguments
Bank (1981), Bramble, Pasciak and Xu (1988),
Mandel (1986), Wang (1993)

e matrix-based methods
Reusken (2002), Olshanskii and Reusken (2002)
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Multigrid Method

e two-grid method: N¢ (fine grid), IN. (coarse grid)

Manchester, July 2005 — p.8/3!



Multigrid Method
e two-grid method: N¢ (fine grid), IN. (coarse grid)

e coefficient matrices: Ay (fine grid), A, (coarse
grid)

direct discretisation on coarse grid

Manchester, July 2005 — p.8/3!



Multigrid Method

two-grid method: N, (fine grid), N, (coarse grid)

coefficient matrices: Ay (fine grid), A, (coarse

grid)

prolongation: bilinear interpolation P

restriction: transpose of prolongation P7
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Multigrid Method

two-grid method: N, (fine grid), N, (coarse grid)

coefficient matrices: Ay (fine grid), A, (coarse

grid)

prolongation: bilinear interpolation P

restriction: transpose of prolongation P7

smoothing: line Gauss-Seidel S4

v steps of pre-smoothing, no post-smoothing
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Multigrid Convergence

algebraic error

ek:ﬁ—uk

two-grid iteration matrix M = (I — PA;'PT A;)SY

error equation

convergence?

e = Mep_1 = MPFeg

k
lex|l < IM]["]leoll

convergence if | M| < 1
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Two-Grid Convergence Analysis

AIM: find an upper bound for

M|z = (I — PAZ'P" Af) S} |2
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Two-Grid Convergence Analysis

AIM: find an upper bound for

Mz = (I — PAZ'P" Ap)S4 |2
e Approach 1: write

— (A;1 — PA'PY)(A;SY) = My Mg

and bound || M 4|2, || Ms]|2 separately
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Two-Grid Convergence Analysis

AIM: find an upper bound for

M|z = (I — PAZ'P" Af) S} |2

e Approach 1: write
= (A;' — PA_'P")(A;S") = MaMs

and bound || M 4|2, || Ms]|2 separately

e Approach 2: bound || M ||2 directly

Manchester, July 2005 — p.10/3!



Model Problem
grid-aligned flow with vertical wind and f = 0
—eViu(z,y) + (0,1).Vu(z,y) =0
Dirichlet boundary conditions

sguare bilinear elements

Y
A u=1

u=0
vertical wind

u=0
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Computational Molecule

parameters h, € 0

— 5 [(26—1)h+4¢€] —3[(26—1)h+€]
AN T /
L(6h—e) — 2 (5h+2€) -
e l N

— 5 [(264+1)h+4¢€] —3[(204+1)h+€]

symmetric stencil

— 5 [(26—1)h+4¢]

5(6h—e)

— L [(264+1)h+4¢€]
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Coefficient Matrix

- M,
M

Mo
M,

Mo

M3 M, M
M3 M
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Coefficient Matrix

- M, Mo 0 7
Ms My Ms

Ms M,y Ms
0 Ms M,

eigenvectors and eigenvalues:

Miv; = Ajvj, Aj = mic+ 2my, coS 4

Ny
Msz = O0;Vj, Oj = M32c+ 212y COS }7\7—7;
Msvj = v;vj, 7j = mM3c+ 2msg, cos §
. . . AT
2 [ . Jm . 2jm . (Ny—1)jm
Vi =4/— |sin——, sin——, ...,sin
FL Ny Ny Ny
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Transformation: Coefficient Matrix (1)

Nz elements, n% unknowns (ny = N;—1)

Vf = [V1V2...an} | Vi = diag(Vf,...,Vf)

M1Vf — VfA, MZVJC — va, Mgi — VfF
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Transformation: Coefficient Matrix (1)

Nz elements, n% unknowns (ny = N;—1)

Vf = [V1V2...an} | Vi = diag(Vf,...,Vf)

M1Vf — VfA, MZVJC — va, Mgi — VfF

> M
™M

VfTAfo =Ty =

>
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Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

- T

T &

0

15

Tnf—l

Tn; |

Tj — tridiag('yj, )\j, O'j)

Ay = QsTsQy

Qf = Vylly
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Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

- 0 -
1>
LTIl = Ty =
Tnf—l
0 Tn; |

Tj — tridiag('yj, )\j, O'j)
T
A =QsTyQy Qs = Vslly
coarse grid: A, = Q.T.Q! Q. = V.II.
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Transformation: Smoothing Matrix

block matrix splitting: A =Dy —La—Ujg@

Gauss-Seidel smoothing matrix:

Sa=(Dpa—LA) 'Us=1—(Da—La) ‘A;
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Transformation: Smoothing Matrix

block matrix splitting: A =Dy —La—Ujg@
Gauss-Seidel smoothing matrix:

Sa=(Dpa—LA) 'Us=1—(Da—La) ‘A;

transformation:
Sa=Qy STQ?:

where Sp =1 — (Dy — L) 'Ty is block-diagonal
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Transformation: Prolongation Matrix

2D prolongation matrix: P=LQL

C 1
5 1

DN | =N | =
e
DN | =

LT—

DN | =
DN | =
L
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Transformation: Prolongation Matrix

2D prolongation matrix: P=LQL

1

1
DN | =

DN | =N | =
e
DN | =

LT—

D[ =

transformation: Q; = (I ® Vy)IIy,

1

DN | =
L

Qc — (Ic X ‘;vc)Hc

P=Q;PQ.=A"QL

a2

anc O aNf_nc

QN —2

ON;—1
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Transformation: Iteration Matrix (1)

M = (I-PA'PTA;)SY
= (I -PQ.T'Q.P'QsTrQ})S)
= Qs(I - PT'P'Ty)Q; (QsSrQy)"
= Q; (I - PT'PTTy) $5Q]
=M = Q;MQ;

where M = (I — PT;'P'Ty) S%
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Transformation: Iteration Matrix (1)

M = (I-PA'PTA;)SY
= (I -PQ.T'Q.P'QsTrQ})S)
= Qs(I — PT'P"Ty)Q% (QsSrQ7)”
= Q; (I - PT'PTTy) $5Q]

= M QrMQy

where M = (I — PT;'P'Ty) S%

Q ¢ Is orthogonal:

M|y = (| M]],
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Transformation: Iteration Matrix (2)

nz = 637
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Transformation: Iteration Matrix (2)

nz = 637

Bl Cl
B2 CZ
B3 C3
B4
C5 B5
CG BG
C., B,
| M ||2 = max {

nz = 637

2
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The Story So Far...

e n% x n% two-grid iteration matrix M

e Fourier transformation converts 2D problem to a set of
n s problems with 1D structure

e ||M||2 can be found from norms of N, smaller problems
n. of size 2ny X 2ny, 1 of size ny X ny
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The Story So Far...

n4 X n% two-grid iteration matrix M

Fourier transformation converts 2D problem to a set of

n s problems with 1D structure

| M ||2 can be found from norms of IN. smaller problems

n. of size 2ny X 2ny, 1 of size ny X ny

IDEA: analyse semiperiodic version of the problem

n. Of size 2Ny X 2NNy, 1 of size Ny X Ny

gain insight into Dirichlet problem behaviour?
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Semiperiodic problem

e B;, C; are replaced by periodic versions, e.g.

B;)er _ [I . Pjper (Tcper)j—l(p})er)T(T})er)j] S;Qer
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Semiperiodic problem
e B;, C; are replaced by periodic versions, e.g.
per Sper er\—1,/pper\T pery per
B, =[I—-P; (T77),; (P )" (Ty )] 5
e transform using coarse grid periodic eigenvectors

o B;’er fer become block diagonal with 2 x 2 blocks
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Semiperiodic problem

B;, C; are replaced by periodic versions, e.g.

B;?er _ [I . Pjper (Tcper)j_l(P;-)er)T(T?er)j] Sé?er

transform using coarse grid periodic eigenvectors
B;“", C7°" become block diagonal with 2 x 2 blocks

permute into block diagonal form

------

......

2-norm given by maximum 2-norm of the 4 x 4 blocks
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Analytic result

e with semiperiodic approximation, when P, > 1

| MPer ||y = \/3 + cos (2mh)
V2(5%)
e as h is small in practice,
2
arer)ly ~ V2

51/

Manchester, July 2005 — p.22/3!



Analytic result

e with semiperiodic approximation, when P, > 1

| MPer ||y = \/3 + cos (2mh)
V2(5%)
e as h is small in practice,
2
[arery o Y2

e When P, < 1, analysis is more detailed but good
approximations to || MP€"||o can be derived
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Analytic result

e with semiperiodic approximation, when P, > 1

| MPer ||y = \/3 + cos (2mh)
V2(5%)
e as h is small in practice,
2
[arery o Y2

e When P, < 1, analysis is more detailed but good
approximations to || MP€"||o can be derived

Question: Does this semiperiodic analysis correctly
predict Dirichlet problem behaviour?
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0.4

0.35

0.3

0.25

0.2

0.15F

0.1

0.05F

Model Problem Results (1)

|
11

|
1.2

|
13

|
14

|
15

1.6

|M||2 Vs Py,
P, > 1only
semiperiodic: dashed line

Dirichlet: solid lines

h fixed for each line

1 _ 1
v =1
semiperiodic: ‘/75 ~ 0.28
V2

Dirichlet —

5
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Model Problem Results (2)

O ||M||2 vs Py,
e P, <1only
e semiperiodic: dashed line

e Dirichlet: solid lines
e h fixed for each line

1 1
.h—gtOh—m

o rv—1

e not a good match

% 01 02 03 04 05 06 07 08 09 1 [ ) MG may d|Verge|
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Observations

o [|[M]lz = /[ (M*M)]
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Observations

o [|M|lz = /[A1(M*M)
e for P, < 1, matrix blocks have one ‘bad’ eigenvalue

10

T T T T T
9 | II |
8 | II |
7 | II |

2

| | | |
0 0.5 1 15 2 2.5 3

VI A(MFMy;)| for fixed P, = 0.38
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Alternative Bound?

e artificially ‘remove’ this eigenvalue: use /|A2(M*M)|
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Alternative Bound?

artificially ‘remove’ this eigenvalue: use \/|A2(M*M)|

e P, <1only

0.5

0.45

e semiperiodic:
[ MPET |2

0.4
0.35

0.3

e Dirichlet:
V| A2(M*M)|

0.25

0.2F

0.15

0.1

0.05F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Outlying eigenvalue

e In practice, the effect of this outlying eigenvalue is
transient

e the eigenvector corresponding to the outlying
eigenvalue is large only on grid lines very close to the
iInflow boundary

e after a few MG iterations, it is smooth and so is easily
eliminated by coarse grid correction
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Outlying eigenvalue

In practice, the effect of this outlying eigenvalue is
transient

the eigenvector corresponding to the outlying
eigenvalue is large only on grid lines very close to the
iInflow boundary

after a few MG Iterations, it is smooth and so Is easily
eliminated by coarse grid correction

these effects do not have an impact on practical MG
performance
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MG lteration Counts

e MG-like convergence for any value of P,

1
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Further Remarks

e Separate approximation and smoothing matrices:

e semiperiodic analysis for smoothing matrix norm is
representative of Dirichlet problem behaviour for all
values of P,

e semiperiodic analysis for approximation matrix norm
IS representative of Dirichlet problem behaviour for
P, > 1: for P, < 1, ‘bad’ eigenvalues again cause
trouble.
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Further Remarks

e Separate approximation and smoothing matrices:

e semiperiodic analysis for smoothing matrix norm is
representative of Dirichlet problem behaviour for all
values of P,

e semiperiodic analysis for approximation matrix norm
IS representative of Dirichlet problem behaviour for
P, > 1: for P, < 1, ‘bad’ eigenvalues again cause
trouble.

e Replacing the Dirichlet condition by a Neumann
condition on the outflow boundary leads to similar
computational results.
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Conclusions

Linear algebra can be used to give a useful insight into
convergence of two-grid iteration.

We have obtained bounds on the multigrid convergence
factor for a problem with semiperiodic boundary
conditions.

Boundary effects associated with a Dirichlet condition
on the inflow boundary appear to be transient.

Semiperiodic analysis gives an accurate description of
MG behaviour for the full Dirichlet problem.
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