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Four-dimensional Variational Assimilation (4D-Var)

@ 4D-Var aims to find the solution of a numerical forecast
model that best fits sequences of observations distributed in
space over a finite time interval.

Minimise cost function
1

Jv) = E[v —vbTB v — vP]

N
b3 HAMio(v) — ¥R THAMio(v)) — )
i=0

analysis v, background v®, observations y°
background and observation error covariance matrices B, R;
observation operators  H;

1
model propagator Mio = M(tj, to)= H/\/l(tk, tk—1)
k=i
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Incremental 4D-Var: sequence of cost functions

@ Linearise H;, M ¢: introduce tangent linear (Jacobian)
matrices

_ OH; _ oMo
k-1 — 971 k=1 _ i,
T ov ’ Mo~ = ov

v=vk—1

v=yk—1
@ Hessian of the cost function is
H=B"1+H R H

where
[Hy , (HiM1o)", ..., (HuMno) 1"

bldiag(R;), i=1,...,N.

) I
I

@ Cannot store H as a matrix: action of applying H to a vector
is available, but expensive (involves both forward and
backward model solves).
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Preconditioned Conjugate Gradient Method

@ Solve Hv = g at each Gauss-Newton step using PCG (needs
only Hv).
@ Choose preconditioner P so that
(i) eigenvalues of P~1/2HP~1/2 are well clustered;
(i) Px = r is easily solved.
@ Extreme cases:
e P=H: good for (i), bad for (ii)
e P=1: good for (ii), bad for (i)
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Preconditioned Conjugate Gradient Method

@ Solve Hv = g at each Gauss-Newton step using PCG (needs
only Hv).
@ Choose preconditioner P so that
(i) eigenvalues of P~1/2HP~1/2 are well clustered;
(i) Px = r is easily solved.
@ Extreme cases:
e P=H: good for (i), bad for (ii)
e P=1: good for (ii), bad for (i)

@ Precondition H based on the background covariance matrix:
H = (BI/Z)THBI/Z =/ + (81/2)THT§—1HBI/2

@ Eigenvalues of H are more clustered, in a narrow band above
one, with few eigenvalues distinct enough to contribute
noticeably to the Hessian value.

HABEN ET AL. (2011), TABEART ET AL. (2018)
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Correlation matrix (1D Burgers' equation example)

@ H! (scaled to have unit diagonal)
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Precon ned correlation matrix

@ H~1 (after first level preconditioning)
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Second level preconditioning

@ Storage/working with H still expensive: introduce second level
preconditioning for H.

o Construct a multilevel approximation to H~1/2 based on a
sequence of nested grids.

@ Discretise evolution equation on a grid with m 4 1 nodes
(level 0) to represent Hessian Hp

@ Grid level k contains m, = m/2% + 1 nodes.

® @ & L —@—0—0—0 level 0

[ L L 2 L 2 ® level 1

® L 2 ® level 2
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Limited-memory approximation

@ Find n. leading eigenvalues and orthonormal eigenvectors
using the Lanczos method (needs only Hv).

@ Construct approximation

H~I+ Z()\, — 1)u,-u,-T
i=1

@ Easy to evaluate matrix powers:

Ne
HP ~ | + Z()\f’ —1uju/
i=1
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Grid transfers with ‘“correction”

@ Grid transfer based on piecewise cubic splines:

o Restriction matrix Rf from k = f to k = c.
o Prolongation matrix Pf from k =cto k =f.

@ l|dentity matrix /, on grid level k.

@ Construct new operators which transfer a matrix between a
course grid level ¢ and a fine grid level f.

@ From coarse to fine:
Her = PS(He — IR + I
o From fine to coarse:

Hrosc = RE(Hr — I¢)Pf + I
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Outline of multilevel concept

Given a symmetric positive definite operator Hy available on the
finest grid level in matrix-vector product form:

@ represent Hy on the coarsest grid level as Hy_,;

© use a local preconditioner B,f“ to obtain
P k+1\T k+1
H0—>k = (Bk+ ) H0—>I<Bk+
with improved eigenvalue clustering;

© build a limited memory approximation :‘:IO__{C(2 from ny
eigenvalues of Hy_.x found using the Lanczos method;

© project this to the level above to be used as local
preconditioner at the next coarsest level,

© move up one grid level and repeat.
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Algorithm

@ use N = (ng,ni,...,nc) eigenvalues at each level

[A, U]=mlevd(Hoy, Ne)
for k=k,ke—1,...,0
compute by the Lanczos method
and store in memory
{)\L, U,’(}, = 1, R of H0_>k
using preconditioner B,’(H'1
end

@ storage:
_ 1 Nk 1 Nk —1 1 no
= Mo o A X A A A

A
_ 1 Nk 1 Nke—1 1 no
U = (U, Uk Ui g, Ul Uy U]
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@ Test using 1D Burgers' equation with initial condition

f(x) =0.1+0.35 [l—l—sin <47rx+3§>}, 0<x<1

@ 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, and 0.7 in [0, 1].

@ Multilevel preconditioning with four grid levels:

k 0 1 2 3
grid points | 401 201 101 51
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Assessing approximation accuracy

@ Riemannian distance:

n 1/2
5(A,B) = ||In(B~A)| - = (Z ln2/\,->

@ Compare eigenvalues of H~1 and A= on the finest grid level
k = 0 using ~

S(HTL, H™Y)

D=5

@ Vary number of eigenvalues chosen on each grid level

Ne = (ng, n1, n2, n3)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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PCG iteration for one Newton step

@ measurement units

@ memory: length of vector on finest grid L
¢ cost: cost of HVP on finest grid HVP

Preconditioner | # CG iterations | storage cost
none 57 0L 57 HVP
MG(400,0,0,0) 1 400 L | 402 HVP
MG(4,8,16,32) 4 16 L 34 HVP
MG(0,8,16,32) 5 12 L 14 HVP
MG(0,0,16,32) 8 8L 10 HVP
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Solve cost measured in number of HVPs

5
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o
.
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Cost including building preconditioner
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All is not lost. . .

@ Cost-effective implementations are available!

@ Algorithm 1: partition domain into subregions and
approximate the Hessian using an assembly of local Hessians.
o Fewer eigenvalues required for limited-memory representation
of each local Hessian.

¢ Local Hessians can be computed in parallel, using local rather
than global models, and at any grid level.

@ Algorithm 2: use the multilevel algorithm to approximate each
limited-memory local Hessian based on local inverse Hessians.

o Reduces memory requirements of Algorithm 1.
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Version 1: cost including building preconditioner

@ Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines).

5
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Version 2: cost including building preconditioner

@ Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines) with (8,4,0,0) MG approx.
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Conclusions and extensions

@ Similar results with other configurations (e.g. moving sensors,
different initial conditions).

@ Multilevel preconditioning looks promising for constructing a
good limited-memory approximation to H™L.

@ The balance between restrictions on memory/cost limitations
may vary between particular applications.

@ |dentifying globally appropriate values for (ng, n1, n2, n3) and
other parameters is tricky, but “rules of thumb” can be
developed.

@ Future investigations:

(<]

application to shallow water equations;
problems in higher dimensions;
extension to other operators;
applications for other sensor systems.

¢ ¢ @
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Multilevel algorithm for H~!

@ Represent Hy at a given level (k, say):
Hosk = RY(Ho — o) P& + I
@ Precondition to improve eigenvalue spectrum:
Floosi = (B£+1)THO—>kB/I:+1

@ Find ny eigenvalues/eigenvectors of I:Io_>k using the Lanczos
method.

@ Approximate I:IO__I/kz:

N
~1/2 1 T
H, ~ I + <— — 1) u;u;
0—k k E o iu;
i=1 Ai
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Preconditioners

o Construct B,’f“ on level k 4+ 1, apply on level k.
@ On coarsest grid, level k + 1 does not exist so set Bf“ = I.

@ For other levels, construct preconditioners recursively:

T T
Bl 1 == li / Bk 2
—k

k+1 _ [ pk+21—1/2
B, = |BeiiH 0—k+1Pk+1

k+1 0—>k+1] Sk

@ Square brackets represent projection to the correct grid level
using “corrected” grid transfers, e.g.

(A1l = R Akt — 1) Pig + i
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Hessian decomposition

@ partition domain into subregions and compute local Hessians
H? such that

S

Hv) =1+ (H(v) - 1)

s=1

o fewer eigenvalues required for limited-memory representation
of each H?®

@ local Hessians can be computed
e in parallel;
o using local rather than global models;
@ at any grid level:
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Practical approach: Version 1

Compute limited-memory approximations to local
sensor-based Hessians on level | using n; eigenpairs.

Assemble these to form H,, then apply mlevd to H, based on
a fixed Ne.

Local Hessians cheaper to compute.

Additional user-specified parameter(s) /, n; needed.

@ More memory required as local Hessians must also be stored.

Alison Ramage, University of Strathclyde Limited-memory approximation of the inverse Hessian in 4D-Var



Practical approach: version 2

@ Can reduce memory requirements further by using a multilevel
approximation of each limited-memory local Hessian on level /
using n; eigenpairs.

@ Approximate local Hessians by applying mlevd to local inverse
Hessians based on N..

@ Assemble these to form a reduced-memory assembled Hessian
HIm.

@ Use mlevd again on H]™ based on N,.
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