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Motivation

• model: Q-tensor model of nematic liquid crystal cell

• aim: model dynamics of defect movement

• problem: characteristic lengths with large scale
differences

• uniform grid: many grid points needed to capture defect
behaviour

• idea: use adaptive grid methods to ensure there is no
waste of computational effort

ICIAM, July 2007 – p.2/28



Adaptive Grid Methods I

• local mesh refinement
• extra nodes added locally in regions of high error
• h refinement, p refinement
• often requires complicated data structures which

need updating frequently

• moving mesh methods
• existing node points are moved to regions of high

error
• same grid connectivity maintained
• r refinement
• comparatively easy extension of existing software
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Adaptive Grid Methods II

• velocity-based methods

• mesh point velocities are calculated directly
• moving finite element methods
• geometric conservation laws

• location-based methods

• mesh points are calculated directly
• equidistribution methods
• harmonic mapping

• adaptive grid on physical domain is image of uniform
grid on computational domain under a suitable mapping
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Grid Mapping in 1D

• coordinates: physical x ∈ [0, 1], computational ξ ∈ [0, 1]

• coordinate transformation:

x = x(ξ, t), ξ ∈ [0, 1], x(0, t) = 0, x(1, t) = 1

• uniform mesh on computational domain:

ξi =
i

N
, i = 0, 1, . . . , N, N ∈ Z

+

• corresponding physical mesh:

0 = x0 < x1 < . . . < xN−1 < xN = 1

x

ξ
ICIAM, July 2007 – p.5/28



Equidistribution Principle in 1D

• choose (positive) monitor function M(x, t)

• equidistribution principle (EP):

∫ x(ξ,t)

0
M(s, t) ds = ξ

∫ 1

0
M(s, t) ds

• discrete forms:
∫ xi+1

xi

M(s, t) ds =

∫ xi

xi−1

M(s, t) ds, i = 1, . . . , N − 1

or
∫ xi

xi−1

M(s, t) ds =
1

N

∫ 1

0
M(s, t) ds, i = 1, . . . , N
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Monitor Functions
• (scaled) arc-length monitor function

M(u(x, t)) =

√

α̂ +

(

∂u(x, t)

∂x

)2

user-prescribed parameter α̂ > 0

• various other ideas e.g. Beckett and Mackenzie (2000)

M(u(x, t)) = δ +

∣

∣

∣

∣

∂u(x, t)

∂x

∣

∣

∣

∣

1

m

δ, m positive constants, δ =

∫ 1

0

∣

∣

∣

∣

∂u(x, t)

∂x

∣

∣

∣

∣

1

m

dx
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Aside on MMPDEs
• equidistribution principle

differentiate EP twice with respect to ξ

• variational principle
find Euler-Lagrange equation associated with

I[x] =
1

2

∫ 1

0
x2

ξ(ξ)M
2(x(ξ)) dξ

xξξ +
Mξ

M
xξ = 0

elliptic equidistribution generator
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Adaptive Grid Methods III

• dynamic methods:
• moving mesh partial differential equation (MMPDE)
• mesh equation and underlying PDE solved together

• static methods: at a fixed time,
• equation is discretised and solved on an initial mesh
• adaptive mesh is constructed based on EP for

monitor function
• solution is interpolated onto new mesh
• solution - mesh generation loop
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Practical Algorithm

• Sanz-Serna and Christie, JCP 67, 1986

• 1D example:
ut = F (u, ux, uxx, x, t)

plus boundary and initial conditions

• time level tn, grid xn
j , approximation Un

j to u(xn
j , tn)

• equidistribute solution arc-length:

(i) Use numerical scheme on grid xn
j to find Ūn+1

j .

(ii) Join points (xn
j , Ūn+1

j ) by straight lines. Find the points
on the polygon which divide its length into equal parts
and project onto the x-axis. Compute Un+1

j via
interpolation.
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Q-tensor Theory

• aim: minimise free energy density

F =

∫

V
F (θ, φ,∇θ,∇φ) dV

• problems with multivalued angles/singularities

• tensor order parameter

Q =





q1 q2 q3

q2 q4 q5

q3 q5 −q1 − q4





• express free energy density as

F =

∫

V
F (qi,∇qi) dV, i = 1, 2, 3, 4, 5
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1D Model Problems
• homogeneous uniaxial alignment in Ω ≡ z ∈ [0, d]

• z-axis aligned with n

Q =

√

3

2
S





−1
3 0 0

0 −1
3 0

0 0 2
3





Q depends only on scalar order parameter S

• bulk energy densities (As, Bs, Cs, L1s, Seq, Feq +ve)

1

2
AsS

2 −
1

3
BsS

3 +
1

4
CsS

4 +

(

2L1s + 1

6

) (

∂S

∂z

)2

(1)

Feq

Seq
S

(

2 −
1

Seq
S

)

+

(

2L1s + 1

6

) (

∂S

∂z

)2

(2)
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Analytic Solutions

∫ S(z)

0

ds
√

G(S) − G(Seq)
= z G(S) = αS2 −

2β

3
S3 +

γ

2
S4

S(z) = Seq

(

sinh ρz

tanh ρds
− cosh ρz + 1

)

ρ =

√

∣

∣

∣

∣

6Feq

S2
eq(2L1s + 1)

∣

∣

∣

∣
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Theoretical Accuracy

• measure of error: using linear interpolant SI

‖e‖L∞(0,d) = max
z∈[0,d]

|Sexact(z) − SI(z)|

• for green problem, it can be shown that

‖e‖L∞(0,d) ≤
C

N2

with both uniform and adaptive grids

• for blue problem, using practical measure

l∞ = max
j=0,...,N/2

|Sf (zj) − SN (zj)|

adaptive grid error is O(N−2)
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Efficiency

• CPU times (in seconds) required to solve blue problem

Adaptive Grid
accuracy N solve grid total
1 × 10−4 115 1.9491e-1 7.6075e-4 1.9590e-1
1 × 10−5 258 2.2016e-1 9.7614e-4 2.2137e-1
1 × 10−6 476 2.4822e-1 1.3882e-3 2.4344e-1
1 × 10−7 817 2.7932e-1 1.9825e-3 2.8150e-1

Uniform Grid
accuracy N total
1 × 10−4 174 1.9371e-1
1 × 10−5 338 2.3071e-1
1 × 10−6 568 2.5882e-1
1 × 10−7 1051 3.2753e-1

% speedup
-1.13
4.05
5.94
14.05
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Order Reconstruction Problem I
Barberi et al., Eur. J. Phys. E (2004)

• cell surface treated at boundaries to induce alignments
uniformly tilted by a specified tilt angle but oppositely
directed

• two topologically different equilibrium states: mostly
horizontal alignment with a slight splay, mostly vertical
alignment with a bend of almost π radians
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Order Reconstruction Problem II
• aim: model order reconstruction which takes place

when an electric field is applied

• no longer purely uniaxial: need full Q-tensor

• 5 coupled PDEs for qis, plus PDE for electric potential U

• 1D domain z ∈ [0, d], monitor based on T (z) = tr(Q2)

M(T (z)) =

√

α̂ +

(

dT

dz

)2

• quantify order reconstruction via measure of biaxiality

b =

√

1 −
6 tr(Q3)2

tr(Q2)3

• coded using COMSOL Multiphysics
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Numerical Results

V = 11.3 V = 11.32

• solutions for electric field strength V just below and
above the critical voltage at which switching occurs

• adaptive grid with 256 quadratic elements
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Grid Trajectories
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• approx. 25% fewer points (less CPU time) needed for
adaptive grid
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Exchange of Eigenvalues
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Detail of Biaxial Transition
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Solution Accuracy: Uniform Grid

(a) N = 32. (b) N = 64.

(c) N = 128. (d) N = 256.
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Solution Accuracy: Switching Times

N uniform adaptive

128 no switching occurs 2.064 × 10−3

256 2.100 × 10−3 2.064 × 10−3

512 2.065 × 10−3 2.064 × 10−3

1024 2.064 × 10−3 2.064 × 10−3

• when the uniform grid is not fine enough, switching
either does not occur at all or occurs at a later time
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Equidistribution in 2D

• physical x = [x, y]T , computational ξ = [ξ, η]T

• minimise

I[ξ] =
1

2

∫

D
[(∇ξ)T G−1

1 ∇ξ + (∇η)T G−1
2 ∇η] dx

G1, G2 symmetric positive definite monitor matrices

• Euler-Lagrange equations: modified gradient flow

∂ξ

∂t
=

P

τ
∇ · (G−1

1 ∇ξ),
∂η

∂t
=

P

τ
∇ · (G−1

2 ∇η) = 0

spatial balance operator P

temporal smoothing parameter τ
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Equidistribution in 2D

• interchange roles of dependent/independent variables

• Winslow-type monitor matrices

G1 = G2 =

[

w 0
0 w

]

, w(x, t) =
√

α̂ + |∇[tr(Q2)]|2

• MMPDE

∂x

∂t
=P (axξξ + bxξη + cxηη + dxξ + exη)

a, b, c, d, e depend on ω, xξ, xη, yξ, yη

• coded using COMSOL Multiphysics
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2D Test Problem
Zhang et al., Liquid Crystals (2004)

• 2D test problem
• square cell [0, d] × [0, d]

• variable pretilt on x = 0, fixed pretilt on x = d

• periodic boundary conditions on y = 0, y = d
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100
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Summary

• 1D model problem analysis shows
• adaptive grid error is O(N−2) for a simple model

problem
• adaptive grid error appears to be O(N−2) for a more

realistic model problem

• arc-length monitor function based on tr(Q2) works well

• to obtain a specified level of accuracy, adaptive grid
requires fewer points: inaccurate solutions/switching
times can be obtained if uniform grid is not fine enough

• 3-year EPSRC project (from June 1st 2007) with
Ainsworth, Mottram (Strathclyde) and Newton
(Hewlett-Packard)

Adaptive Numerical Methods for Optoelectronic Devices
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• Adaptive Grid Methods for Q-Tensor Theory of Liquid
720 Crystals: A One-Dimensional Feasibility Study
Strathclyde Mathematics Research Report No. 13,
2006.

• Adaptive Solution of a One-dimensional Order 724
Reconstruction Problem in Q-Tensor Theory of Liquid
Crystals
Liquid Crystals, 34 (4), pp. 479 - 487, 2007.
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