
An Introduction to Iterative Solvers
and Preconditioning

Alison Ramage
Dept of Mathematics and Statistics

University of Strathclyde
A.Ramage@strath.ac.uk

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (1)

Consider a real square N × N matrix A.

A is symmetric if A=AT .

The trace of A, tr(A), is the sum of its diagonal entries.

If Av = λv for λ ∈ R and v ∈ RN , then λ is called the
eigenvalue of A with corresponding eigenvector v.

A is called

positive definite if all of its eigenvalues are positive;

negative definite if all of its eigenvalues are negative;

indefinite if it has positive and negative eigenvalues.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (1)

Consider a real square N × N matrix A.

A is symmetric if A=AT .

The trace of A, tr(A), is the sum of its diagonal entries.

If Av = λv for λ ∈ R and v ∈ RN , then λ is called the
eigenvalue of A with corresponding eigenvector v.

A is called

positive definite if all of its eigenvalues are positive;

negative definite if all of its eigenvalues are negative;

indefinite if it has positive and negative eigenvalues.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (1)

Consider a real square N × N matrix A.

A is symmetric if A=AT .

The trace of A, tr(A), is the sum of its diagonal entries.

If Av = λv for λ ∈ R and v ∈ RN , then λ is called the
eigenvalue of A with corresponding eigenvector v.

A is called

positive definite if all of its eigenvalues are positive;

negative definite if all of its eigenvalues are negative;

indefinite if it has positive and negative eigenvalues.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (1)

Consider a real square N × N matrix A.

A is symmetric if A=AT .

The trace of A, tr(A), is the sum of its diagonal entries.

If Av = λv for λ ∈ R and v ∈ RN , then λ is called the
eigenvalue of A with corresponding eigenvector v.

A is called

positive definite if all of its eigenvalues are positive;

negative definite if all of its eigenvalues are negative;

indefinite if it has positive and negative eigenvalues.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (1)

Consider a real square N × N matrix A.

A is symmetric if A=AT .

The trace of A, tr(A), is the sum of its diagonal entries.

If Av = λv for λ ∈ R and v ∈ RN , then λ is called the
eigenvalue of A with corresponding eigenvector v.

A is called

positive definite if all of its eigenvalues are positive;

negative definite if all of its eigenvalues are negative;

indefinite if it has positive and negative eigenvalues.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (2)

Common vector norms:

‖v‖∞ = maxi |vi | infinity norm

‖v‖1 =
∑N

i=1 |vi | 1-norm

‖v‖2 =
√
v2

1 + v2
2 + ...+ v2

n =
√
vTv 2-norm

Common matrix norms:

‖A‖∞ = maxi
∑N

j=1 |aij | max abs row sum

‖A‖1 = maxj
∑N

i=1 |aij | max abs column sum

‖A‖2 =
√
λmax(ATA) spectral norm

‖A‖F =
√
tr(AAT) Frobenius norm

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (2)

Common vector norms:

‖v‖∞ = maxi |vi | infinity norm

‖v‖1 =
∑N

i=1 |vi | 1-norm

‖v‖2 =
√
v2

1 + v2
2 + ...+ v2

n =
√
vTv 2-norm

Common matrix norms:

‖A‖∞ = maxi
∑N

j=1 |aij | max abs row sum

‖A‖1 = maxj
∑N

i=1 |aij | max abs column sum

‖A‖2 =
√
λmax(ATA) spectral norm

‖A‖F =
√
tr(AAT) Frobenius norm

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (3)

Vectors v,w in a vector space V over R satisfy

v,w ∈ V ⇒ v + w ∈ V , v ∈ V , α ∈ R ⇒ αv ∈ V .

Vectors v1, v2, . . . , vm ∈ V are linearly independent if

m∑
j=1

ajvj = a1v1 + . . .+ amvm = 0⇔ a1, a2, . . . , am = 0.

A vector space V has dimension d if there exist d linearly
independent basis vectors y1, y2, . . . , yd such that any vector
in V can be written as a linear combination of the basis
vectors, i.e.,

v =
d∑

j=1

bjyj .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (3)

Vectors v,w in a vector space V over R satisfy

v,w ∈ V ⇒ v + w ∈ V , v ∈ V , α ∈ R ⇒ αv ∈ V .

Vectors v1, v2, . . . , vm ∈ V are linearly independent if

m∑
j=1

ajvj = a1v1 + . . .+ amvm = 0⇔ a1, a2, . . . , am = 0.

A vector space V has dimension d if there exist d linearly
independent basis vectors y1, y2, . . . , yd such that any vector
in V can be written as a linear combination of the basis
vectors, i.e.,

v =
d∑

j=1

bjyj .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Revision of Linear Algebra Ideas (3)

Vectors v,w in a vector space V over R satisfy

v,w ∈ V ⇒ v + w ∈ V , v ∈ V , α ∈ R ⇒ αv ∈ V .

Vectors v1, v2, . . . , vm ∈ V are linearly independent if

m∑
j=1

ajvj = a1v1 + . . .+ amvm = 0⇔ a1, a2, . . . , am = 0.

A vector space V has dimension d if there exist d linearly
independent basis vectors y1, y2, . . . , yd such that any vector
in V can be written as a linear combination of the basis
vectors, i.e.,

v =
d∑

j=1

bjyj .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Motivation: PDE-based Problems

Large-scale simulations occur in e.g. fluid/solid mechanics,
structural engineering, elasticity, medical applications,
meteorology . . .

They are often modelled using, e.g., finite element, finite
difference or finite volume discretisations.

These often have only local connections between unknowns on
the computational grid.

This can lead to very large, very sparse linear systems.

Linear algebra costs often dominate.

Issues magnified for modern higher-dimensional PDE
problems.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Motivation: PDE-based Problems

Large-scale simulations occur in e.g. fluid/solid mechanics,
structural engineering, elasticity, medical applications,
meteorology . . .

They are often modelled using, e.g., finite element, finite
difference or finite volume discretisations.

These often have only local connections between unknowns on
the computational grid.

This can lead to very large, very sparse linear systems.

Linear algebra costs often dominate.

Issues magnified for modern higher-dimensional PDE
problems.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Motivation: PDE-based Problems

Large-scale simulations occur in e.g. fluid/solid mechanics,
structural engineering, elasticity, medical applications,
meteorology . . .

They are often modelled using, e.g., finite element, finite
difference or finite volume discretisations.

These often have only local connections between unknowns on
the computational grid.

This can lead to very large, very sparse linear systems.

Linear algebra costs often dominate.

Issues magnified for modern higher-dimensional PDE
problems.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Motivation: PDE-based Problems

Large-scale simulations occur in e.g. fluid/solid mechanics,
structural engineering, elasticity, medical applications,
meteorology . . .

They are often modelled using, e.g., finite element, finite
difference or finite volume discretisations.

These often have only local connections between unknowns on
the computational grid.

This can lead to very large, very sparse linear systems.

Linear algebra costs often dominate.

Issues magnified for modern higher-dimensional PDE
problems.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Motivation: PDE-based Problems

Large-scale simulations occur in e.g. fluid/solid mechanics,
structural engineering, elasticity, medical applications,
meteorology . . .

They are often modelled using, e.g., finite element, finite
difference or finite volume discretisations.

These often have only local connections between unknowns on
the computational grid.

This can lead to very large, very sparse linear systems.

Linear algebra costs often dominate.

Issues magnified for modern higher-dimensional PDE
problems.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Motivation: PDE-based Problems

Large-scale simulations occur in e.g. fluid/solid mechanics,
structural engineering, elasticity, medical applications,
meteorology . . .

They are often modelled using, e.g., finite element, finite
difference or finite volume discretisations.

These often have only local connections between unknowns on
the computational grid.

This can lead to very large, very sparse linear systems.

Linear algebra costs often dominate.

Issues magnified for modern higher-dimensional PDE
problems.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Model Finite Element BVP

Laplace’s equation

d-dimensional uniform grid, discretisation parameter h

n =
1

h
nodes in each dimension

coefficient matrix A is N × N where N = O(nd) = O(h−d)

e.g. bilinear finite elements

d = 2 : 9 nonzeros per row

d = 3 : 27 nonzeros per row

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Solving Linear Systems

PROBLEM: solve Ax = b where A is very large and sparse.

Direct methods: e.g. Gaussian elimination

Factorise A as L (lower triangular matrix) and U (upper
triangular matrix).
Solve for x via back-substitution.
Direct computation of exact solution x̂.

Iterative methods:

Choose an initial guess x0.
Generate a sequence of iterates x1, x2, x3, . . .
Stop when converged in some sense to x̂.
Usual to iterate until ‖xk − xk−1‖ ≤ ε for some given tolerance
ε.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Solving Linear Systems

PROBLEM: solve Ax = b where A is very large and sparse.

Direct methods: e.g. Gaussian elimination

Factorise A as L (lower triangular matrix) and U (upper
triangular matrix).
Solve for x via back-substitution.
Direct computation of exact solution x̂.

Iterative methods:

Choose an initial guess x0.
Generate a sequence of iterates x1, x2, x3, . . .
Stop when converged in some sense to x̂.
Usual to iterate until ‖xk − xk−1‖ ≤ ε for some given tolerance
ε.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Solving Linear Systems

PROBLEM: solve Ax = b where A is very large and sparse.

Direct methods: e.g. Gaussian elimination

Factorise A as L (lower triangular matrix) and U (upper
triangular matrix).
Solve for x via back-substitution.
Direct computation of exact solution x̂.

Iterative methods:

Choose an initial guess x0.
Generate a sequence of iterates x1, x2, x3, . . .
Stop when converged in some sense to x̂.
Usual to iterate until ‖xk − xk−1‖ ≤ ε for some given tolerance
ε.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Direct or Iterative Solvers?

Direct methods:

efficient for full matrices;
good for lots of RHS vectors.

sparse matrices may lead to fill-in;
node ordering often important;
storage and CPU restrictions.

Iterative methods:

data structures predetermined;
no need for special node ordering;
efficient for extremely large sparse problems;
last iterate can give a good starting vector.

some expertise needed;
difficult to judge when to stop;
lack of robustness.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Direct or Iterative Solvers?

Direct methods:

efficient for full matrices;
good for lots of RHS vectors.

sparse matrices may lead to fill-in;
node ordering often important;
storage and CPU restrictions.

Iterative methods:

data structures predetermined;
no need for special node ordering;
efficient for extremely large sparse problems;
last iterate can give a good starting vector.

some expertise needed;
difficult to judge when to stop;
lack of robustness.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Direct or Iterative Solvers?

Direct methods:

efficient for full matrices;
good for lots of RHS vectors.

sparse matrices may lead to fill-in;
node ordering often important;
storage and CPU restrictions.

Iterative methods:

data structures predetermined;
no need for special node ordering;
efficient for extremely large sparse problems;
last iterate can give a good starting vector.

some expertise needed;
difficult to judge when to stop;
lack of robustness.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Direct or Iterative Solvers?

Direct methods:

efficient for full matrices;
good for lots of RHS vectors.

sparse matrices may lead to fill-in;
node ordering often important;
storage and CPU restrictions.

Iterative methods:

data structures predetermined;
no need for special node ordering;
efficient for extremely large sparse problems;
last iterate can give a good starting vector.

some expertise needed;
difficult to judge when to stop;
lack of robustness.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Direct or Iterative Solvers?

Direct methods:

efficient for full matrices;
good for lots of RHS vectors.

sparse matrices may lead to fill-in;
node ordering often important;
storage and CPU restrictions.

Iterative methods:

data structures predetermined;
no need for special node ordering;
efficient for extremely large sparse problems;
last iterate can give a good starting vector.

some expertise needed;
difficult to judge when to stop;
lack of robustness.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Direct or Iterative Solvers?

Direct methods:

efficient for full matrices;
good for lots of RHS vectors.

sparse matrices may lead to fill-in;
node ordering often important;
storage and CPU restrictions.

Iterative methods:

data structures predetermined;
no need for special node ordering;
efficient for extremely large sparse problems;
last iterate can give a good starting vector.

some expertise needed;
difficult to judge when to stop;
lack of robustness.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Asymptotic Work Estimates

Iterative method: Conjugate Gradient Method

Direct method: Gaussian Elimination with band-minimising
node ordering

Computational Work

d = 2 d = 3

CG O(N
3
2) O(N

4
3)

GE factorise O(N2) O(N
7
3)

GE solve O(N
3
2) O(N

5
3)

Storage

d = 2 d = 3

CG O(N) O(N)

GE factorise O(N
3
2) O(N

5
3)

GE solve O(N
3
2) O(N

5
3)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Asymptotic Work Estimates

Iterative method: Conjugate Gradient Method

Direct method: Gaussian Elimination with band-minimising
node ordering

Computational Work

d = 2 d = 3

CG O(N
3
2) O(N

4
3)

GE factorise O(N2) O(N
7
3)

GE solve O(N
3
2) O(N

5
3)

Storage

d = 2 d = 3

CG O(N) O(N)

GE factorise O(N
3
2) O(N

5
3)

GE solve O(N
3
2) O(N

5
3)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Asymptotic Work Estimates

Iterative method: Conjugate Gradient Method

Direct method: Gaussian Elimination with band-minimising
node ordering

Computational Work

d = 2 d = 3

CG O(N
3
2) O(N

4
3)

GE factorise O(N2) O(N
7
3)

GE solve O(N
3
2) O(N

5
3)

Storage

d = 2 d = 3

CG O(N) O(N)

GE factorise O(N
3
2) O(N

5
3)

GE solve O(N
3
2) O(N

5
3)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Stationary Iterative Methods

Matrix splitting A = M − N (M invertible):

Ax = b ⇒ (M − N)x = b⇒ Mx = Nx + b.

Generate iterates via

Mxk = Nxk−1 + b⇒ xk = M−1Nxk−1 + M−1b.

iteration matrix R = M−1N

Typical splittings combine D, L, and U where

A = D + L + U.

For stationary methods, M and N do not depend on k .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Stationary Iterative Methods

Matrix splitting A = M − N (M invertible):

Ax = b ⇒ (M − N)x = b⇒ Mx = Nx + b.

Generate iterates via

Mxk = Nxk−1 + b⇒ xk = M−1Nxk−1 + M−1b.

iteration matrix R = M−1N

Typical splittings combine D, L, and U where

A = D + L + U.

For stationary methods, M and N do not depend on k .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Stationary Iterative Methods

Matrix splitting A = M − N (M invertible):

Ax = b ⇒ (M − N)x = b⇒ Mx = Nx + b.

Generate iterates via

Mxk = Nxk−1 + b⇒ xk = M−1Nxk−1 + M−1b.

iteration matrix R = M−1N

Typical splittings combine D, L, and U where

A = D + L + U.

For stationary methods, M and N do not depend on k .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Stationary Iterative Methods

Matrix splitting A = M − N (M invertible):

Ax = b ⇒ (M − N)x = b⇒ Mx = Nx + b.

Generate iterates via

Mxk = Nxk−1 + b⇒ xk = M−1Nxk−1 + M−1b.

iteration matrix R = M−1N

Typical splittings combine D, L, and U where

A = D + L + U.

For stationary methods, M and N do not depend on k .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Common Matrix Splittings

A = M − N, A = D + L + U

Richardson: A = I − (I − A)

Jacobi: A = D − [−(L + U)]

Gauss-Seidel: A = (D + L)− (−U)

SOR: A = Mω − Nω

=
1

ω
(D + ωL)− 1

ω
[(1− ω)D − ωU]

SSOR: A =
ω

2− ω
(MωD

−1MT
ω − NωD

−1NT
ω)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Nonstationary Methods

Solve Ax = b where

A is symmetric and positive definite;
A has s distinct (positive) eigenvalues.

Minimal polynomial is

As + m1A
s−1 + · · ·+ ms−1A + ms I = 0

so

A−1 = − 1

ms
As−1 − m1

ms
As−2 − · · · − ms−1

ms
I .

This means that x̂ = A−1b ∈ K(A,b, s) where

K(A,b, s) ≡ span{b,Ab,A2b, . . . ,As−1b}

is called a Krylov subspace.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Nonstationary Methods

Solve Ax = b where

A is symmetric and positive definite;
A has s distinct (positive) eigenvalues.

Minimal polynomial is

As + m1A
s−1 + · · ·+ ms−1A + ms I = 0

so

A−1 = − 1

ms
As−1 − m1

ms
As−2 − · · · − ms−1

ms
I .

This means that x̂ = A−1b ∈ K(A,b, s) where

K(A,b, s) ≡ span{b,Ab,A2b, . . . ,As−1b}

is called a Krylov subspace.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Nonstationary Methods

Solve Ax = b where

A is symmetric and positive definite;
A has s distinct (positive) eigenvalues.

Minimal polynomial is

As + m1A
s−1 + · · ·+ ms−1A + ms I = 0

so

A−1 = − 1

ms
As−1 − m1

ms
As−2 − · · · − ms−1

ms
I .

This means that x̂ = A−1b ∈ K(A,b, s) where

K(A,b, s) ≡ span{b,Ab,A2b, . . . ,As−1b}

is called a Krylov subspace.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Three equivalent problems

1 Solve the linear equations Ax = b.

2 Minimise the quadratic functional Φ(x) =
1

2
xTAx− xTb.

∇Φ(x) = Ax− b = 0 ⇔ Ax = b.

3 Minimise the norm ‖x− x̂‖A where ‖v‖A =
{
vTAv

} 1
2 .

‖x− x̂‖2
A = (x− x̂)TA(x− x̂) = bTA−1b + 2Φ(x).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Three equivalent problems

1 Solve the linear equations Ax = b.

2 Minimise the quadratic functional Φ(x) =
1

2
xTAx− xTb.

∇Φ(x) = Ax− b = 0 ⇔ Ax = b.

3 Minimise the norm ‖x− x̂‖A where ‖v‖A =
{
vTAv

} 1
2 .

‖x− x̂‖2
A = (x− x̂)TA(x− x̂) = bTA−1b + 2Φ(x).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Three equivalent problems

1 Solve the linear equations Ax = b.

2 Minimise the quadratic functional Φ(x) =
1

2
xTAx− xTb.

∇Φ(x) = Ax− b = 0 ⇔ Ax = b.

3 Minimise the norm ‖x− x̂‖A where ‖v‖A =
{
vTAv

} 1
2 .

‖x− x̂‖2
A = (x− x̂)TA(x− x̂) = bTA−1b + 2Φ(x).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Steepest Descent Method

Φ(x) =
1

2
xTAx− xTb

At a point xk , Φ decreases most rapidly in the direction

−∇Φ(xk) = b− Axk = rk .

The value of Φ at point xk+1 = xk + αkrk minimised when

αk =
rTk rk
rTk Ark

.

This choice enforces

Φ(xk+1) < Φ(xk).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Steepest Descent Method

Φ(x) =
1

2
xTAx− xTb

At a point xk , Φ decreases most rapidly in the direction

−∇Φ(xk) = b− Axk = rk .

The value of Φ at point xk+1 = xk + αkrk minimised when

αk =
rTk rk
rTk Ark

.

This choice enforces

Φ(xk+1) < Φ(xk).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Steepest Descent Method

Φ(x) =
1

2
xTAx− xTb

At a point xk , Φ decreases most rapidly in the direction

−∇Φ(xk) = b− Axk = rk .

The value of Φ at point xk+1 = xk + αkrk minimised when

αk =
rTk rk
rTk Ark

.

This choice enforces

Φ(xk+1) < Φ(xk).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Steepest Descent Method

Φ(x) =
1

2
xTAx− xTb

At a point xk , Φ decreases most rapidly in the direction

−∇Φ(xk) = b− Axk = rk .

The value of Φ at point xk+1 = xk + αkrk minimised when

αk =
rTk rk
rTk Ark

.

This choice enforces

Φ(xk+1) < Φ(xk).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

A Practical SD Example

A =

[
2 1
1 1

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A =

[
9 1
1 1

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

A Practical SD Example

A =

[
2 1
1 1

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A =

[
9 1
1 1

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Conjugate Gradient Method

Choose new search directions {p0,p1, . . .} and write

Pk+1 ≡ span{p0, . . . ,pk}.

Construct iterates

xk+1 = xk + αpk .

We would like

(i) xk+1 = min
x∈Pk+1

Φ(x);

(ii) min
α

Φ(xk + αpk).

QUESTION: can we choose pk so that xk+1 satisfies (i) and
(ii) simultaneously?

ANSWER: Yes! Choose the vectors pk to be A-conjugate, i.e.

pTj Apk = 0, j < k.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Conjugate Gradient Method

Choose new search directions {p0,p1, . . .} and write

Pk+1 ≡ span{p0, . . . ,pk}.

Construct iterates

xk+1 = xk + αpk .

We would like

(i) xk+1 = min
x∈Pk+1

Φ(x);

(ii) min
α

Φ(xk + αpk).

QUESTION: can we choose pk so that xk+1 satisfies (i) and
(ii) simultaneously?

ANSWER: Yes! Choose the vectors pk to be A-conjugate, i.e.

pTj Apk = 0, j < k.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Conjugate Gradient Method

Choose new search directions {p0,p1, . . .} and write

Pk+1 ≡ span{p0, . . . ,pk}.

Construct iterates

xk+1 = xk + αpk .

We would like

(i) xk+1 = min
x∈Pk+1

Φ(x);

(ii) min
α

Φ(xk + αpk).

QUESTION: can we choose pk so that xk+1 satisfies (i) and
(ii) simultaneously?

ANSWER: Yes! Choose the vectors pk to be A-conjugate, i.e.

pTj Apk = 0, j < k.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Conjugate Gradient Method

Choose new search directions {p0,p1, . . .} and write

Pk+1 ≡ span{p0, . . . ,pk}.

Construct iterates

xk+1 = xk + αpk .

We would like

(i) xk+1 = min
x∈Pk+1

Φ(x);

(ii) min
α

Φ(xk + αpk).

QUESTION: can we choose pk so that xk+1 satisfies (i) and
(ii) simultaneously?

ANSWER: Yes! Choose the vectors pk to be A-conjugate, i.e.

pTj Apk = 0, j < k.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Conjugate Gradient Method

Choose new search directions {p0,p1, . . .} and write

Pk+1 ≡ span{p0, . . . ,pk}.

Construct iterates

xk+1 = xk + αpk .

We would like

(i) xk+1 = min
x∈Pk+1

Φ(x);

(ii) min
α

Φ(xk + αpk).

QUESTION: can we choose pk so that xk+1 satisfies (i) and
(ii) simultaneously?

ANSWER: Yes! Choose the vectors pk to be A-conjugate, i.e.

pTj Apk = 0, j < k.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Conjugate Gradient Method

Hestenes & Stiefel (1952)

choose x0

compute r0 = b− Ax0

set p0 = r0

for k = 0 until convergence do
αk = rTk rk/p

T
k Apk

xk+1 = xk + αkpk
rk+1 = rk − αkApk
βk = rTk+1rk+1/r

T
k rk

pk+1 = rk+1 + βkpk
end do

can be implemented with one MVM per iteration

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Finite Termination

The CG method constructs iterates

xk ∈ x0 + span{r0,Ar0, . . . ,A
k−1r0}

with the properties

xk minimises ‖xk − x̂‖A;

iterates can be generated by a three-term recurrence relation.

Theorem: The CG method finds x̂ in s steps.

In exact arithmetic, CG is a direct method!

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Finite Termination

The CG method constructs iterates

xk ∈ x0 + span{r0,Ar0, . . . ,A
k−1r0}

with the properties

xk minimises ‖xk − x̂‖A;

iterates can be generated by a three-term recurrence relation.

Theorem: The CG method finds x̂ in s steps.

In exact arithmetic, CG is a direct method!

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Finite Termination

The CG method constructs iterates

xk ∈ x0 + span{r0,Ar0, . . . ,A
k−1r0}

with the properties

xk minimises ‖xk − x̂‖A;

iterates can be generated by a three-term recurrence relation.

Theorem: The CG method finds x̂ in s steps.

In exact arithmetic, CG is a direct method!

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

A Practical CG Example

A =

[
2 1
1 1

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A =

[
9 1
1 1

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

A Practical CG Example

A =

[
2 1
1 1

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A =

[
9 1
1 1

]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CG Convergence

xk ∈ x0 + span{r0,Ar0, . . . ,A
k−1r0}

Each residual can be written as a polynomial in A times r0:

rk = b− Axk = b− A

(
x0 +

k∑
i=1

γiA
i−1r0

)
= r0 −

k∑
i=1

γiA
i r0

rk = P̂k(A)r0

P̂k ∈ Π1
k≡ polynomials of degree k with constant term 1

This gives

‖xk − x̂‖A = ‖rk‖A−1 = min
Pk∈Π1

k

‖Pk(A)r0‖A−1 .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CG Convergence

xk ∈ x0 + span{r0,Ar0, . . . ,A
k−1r0}

Each residual can be written as a polynomial in A times r0:

rk = b− Axk = b− A

(
x0 +

k∑
i=1

γiA
i−1r0

)
= r0 −

k∑
i=1

γiA
i r0

rk = P̂k(A)r0

P̂k ∈ Π1
k≡ polynomials of degree k with constant term 1

This gives

‖xk − x̂‖A = ‖rk‖A−1 = min
Pk∈Π1

k

‖Pk(A)r0‖A−1 .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CG Convergence

xk ∈ x0 + span{r0,Ar0, . . . ,A
k−1r0}

Each residual can be written as a polynomial in A times r0:

rk = b− Axk = b− A

(
x0 +

k∑
i=1

γiA
i−1r0

)
= r0 −

k∑
i=1

γiA
i r0

rk = P̂k(A)r0

P̂k ∈ Π1
k≡ polynomials of degree k with constant term 1

This gives

‖xk − x̂‖A = ‖rk‖A−1 = min
Pk∈Π1

k

‖Pk(A)r0‖A−1 .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Now expand r0 in terms of orthonormal eigenvectors:

r0 =
n∑

i=1

ρivi , ρi = vTi r0, Avi = λivi .

This gives

‖xk − x̂‖A = min
Pk∈Π1

k

‖Pk(A)
n∑

i=1

ρivi‖A−1

=

{
min

Pk∈Π1
k

n∑
i=1

Pk(λi)
2(ρivi)

TA−1(ρivi)

} 1
2

≤ min
Pk∈Π1

k

max
i
|Pk(λi)|

{
rT0 A−1r0

} 1
2

= min
Pk∈Π1

k

max
i
|Pk(λi)|‖r0‖A−1

so ‖xk − x̂‖A ≤ min
Pk∈Π1

k

max
i
|Pk(λi)|‖x0 − x̂‖A.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Now expand r0 in terms of orthonormal eigenvectors:

r0 =
n∑

i=1

ρivi , ρi = vTi r0, Avi = λivi .

This gives

‖xk − x̂‖A = min
Pk∈Π1

k

‖Pk(A)
n∑

i=1

ρivi‖A−1

=

{
min

Pk∈Π1
k

n∑
i=1

Pk(λi)
2(ρivi)

TA−1(ρivi)

} 1
2

≤ min
Pk∈Π1

k

max
i
|Pk(λi)|

{
rT0 A−1r0

} 1
2

= min
Pk∈Π1

k

max
i
|Pk(λi)|‖r0‖A−1

so ‖xk − x̂‖A ≤ min
Pk∈Π1

k

max
i
|Pk(λi)|‖x0 − x̂‖A.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Ideal Bound

Supppose the polynomial Pmin is such that

M = max
i
|Pmin(λi)| = min

Pk∈Π1
k

max
i
|Pk(λi)|.

MINIMAX APPROXIMATION

Theorem: Greenbaum (1979)
This error bound is sharp, i.e. there is always some x0 such
that the discrete minimax bound

‖xk − x̂‖A ≤ M‖x0 − x̂‖A

is attained.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Ideal Bound

Supppose the polynomial Pmin is such that

M = max
i
|Pmin(λi)| = min

Pk∈Π1
k

max
i
|Pk(λi)|.

MINIMAX APPROXIMATION

Theorem: Greenbaum (1979)
This error bound is sharp, i.e. there is always some x0 such
that the discrete minimax bound

‖xk − x̂‖A ≤ M‖x0 − x̂‖A

is attained.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=0: error=1.0000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=1: error=0.6522

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=2: error=0.2692

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=3: error=0.0668

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=4: error=0.0160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=5: error=0.0000

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=0: error=1.0000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=1: error=0.6522

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=2: error=0.2692

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=3: error=0.0668

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=4: error=0.0160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=5: error=0.0000

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=0: error=1.0000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=1: error=0.6522

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=2: error=0.2692

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=3: error=0.0668

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=4: error=0.0160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=5: error=0.0000

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=0: error=1.0000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=1: error=0.6522

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=2: error=0.2692

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=3: error=0.0668

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=4: error=0.0160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=5: error=0.0000

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=0: error=1.0000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=1: error=0.6522

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=2: error=0.2692

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=3: error=0.0668

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=4: error=0.0160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=5: error=0.0000

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=0: error=1.0000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=1: error=0.6522

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=2: error=0.2692

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=3: error=0.0668

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=4: error=0.0160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k=5: error=0.0000

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Practical Bound

Based on knowledge of λmax and λmin alone, bound involves

T̂k(λ) =
Tk

[
λmax+λmin−2λ
λmax−λmin

]
Tk

[
λmax+λmin
λmax−λmin

] , condition number κ =
λmax

λmin
.

M = max
i
|T̂k(λi)| =

1

Tk

[
λmax+λmin
λmax−λmin

] =
1

Tk

[
κ+1
κ−1

]
CHEBYSHEV APPROXIMATION

Number of iterations required for CG convergence is

k ' 1

2
ln

(
2

ε

√
κ

)
.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Practical Bound

Based on knowledge of λmax and λmin alone, bound involves

T̂k(λ) =
Tk

[
λmax+λmin−2λ
λmax−λmin

]
Tk

[
λmax+λmin
λmax−λmin

] , condition number κ =
λmax

λmin
.

M = max
i
|T̂k(λi)| =

1

Tk

[
λmax+λmin
λmax−λmin

] =
1

Tk

[
κ+1
κ−1

]
CHEBYSHEV APPROXIMATION

Number of iterations required for CG convergence is

k ' 1

2
ln

(
2

ε

√
κ

)
.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Practical Bound

Based on knowledge of λmax and λmin alone, bound involves

T̂k(λ) =
Tk

[
λmax+λmin−2λ
λmax−λmin

]
Tk

[
λmax+λmin
λmax−λmin

] , condition number κ =
λmax

λmin
.

M = max
i
|T̂k(λi)| =

1

Tk

[
λmax+λmin
λmax−λmin

] =
1

Tk

[
κ+1
κ−1

]
CHEBYSHEV APPROXIMATION

Number of iterations required for CG convergence is

k ' 1

2
ln

(
2

ε

√
κ

)
.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

PDE examples

Laplace’s eqn, 3D uniform grid with n nodes per dimension

r , s, t = 1, . . . , n

7 point Finite Difference Stencil

λrst = 1− 1

3
cos

rπ

n + 1
− 1

3
cos

sπ

n + 1
− 1

3
cos

tπ

n + 1

27 point Finite Element Stencil

λrst = 1− 1

4
cos

rπ

n + 1
cos

sπ

n + 1
− 1

4
cos

rπ

n + 1
cos

tπ

n + 1

−1

4
cos

sπ

n + 1
cos

tπ

n + 1
− 1

4
cos

rπ

n + 1
cos

sπ

n + 1
cos

tπ

n + 1

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

7 point Finite Difference Stencil

Tchebyshev error: 0.5662e-1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Minimax error: 0.5507e-1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

7 point Finite Difference Stencil

Tchebyshev error: 0.5662e-1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Minimax error: 0.5507e-1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

27 point Finite Element Stencil

Tchebyshev error: 0.3918e-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−3

Minimax error: 0.1369e-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−3

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

27 point Finite Element Stencil

Tchebyshev error: 0.3918e-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−3

Minimax error: 0.1369e-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−3

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CG residual reduction

512× 512 matrices, zero initial guess, random RHS

different eigenvalue spectra, same condition number

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Tchebyshev zeros

evenly spread

FD stencil

FE stencil

8 clusters

2 clusters

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CG Method In Practice

Advantages:

involves only matrix-vector and dot products;

exact solution obtained in at most s iterations.

Problems:

s may be very large;

rounding error means theoretical properties lost.

Solution:

treat CG as an iterative method;

reduce the number of CG steps required by applying
PRECONDITIONING (more later . . .).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CG Method In Practice

Advantages:

involves only matrix-vector and dot products;

exact solution obtained in at most s iterations.

Problems:

s may be very large;

rounding error means theoretical properties lost.

Solution:

treat CG as an iterative method;

reduce the number of CG steps required by applying
PRECONDITIONING (more later . . .).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CG Method In Practice

Advantages:

involves only matrix-vector and dot products;

exact solution obtained in at most s iterations.

Problems:

s may be very large;

rounding error means theoretical properties lost.

Solution:

treat CG as an iterative method;

reduce the number of CG steps required by applying
PRECONDITIONING (more later . . .).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Symmetric Indefinite Systems

If A is symmetric and indefinite:

A has both positive and negative (nonzero) eigenvalues;

vTAv may equal zero for some N-vector v 6= 0.

Potential problems with CG:

A can no longer be used to define a norm;

breakdown may occur: denominator of αk could be zero (or
close to zero).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Symmetric Indefinite Systems

If A is symmetric and indefinite:

A has both positive and negative (nonzero) eigenvalues;

vTAv may equal zero for some N-vector v 6= 0.

Potential problems with CG:

A can no longer be used to define a norm;

breakdown may occur: denominator of αk could be zero (or
close to zero).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Conjugate Residual Method (Stiefel (1955))

Solve A2x = Ab by CG method.

CR method constructs iterates

xk ∈ x0 + span{r0,Ar0, . . . ,A
k−1r0}

with properties

xk minimises ‖xk − x̂‖A2 = ‖rk‖2;

uses a three-term recurrence relation.

Symmetric eigenvalue intervals: convergence bound gives

k ∝
√
κ(A2) = κ(A).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Conjugate Residual Method (Stiefel (1955))

Solve A2x = Ab by CG method.

CR method constructs iterates

xk ∈ x0 + span{r0,Ar0, . . . ,A
k−1r0}

with properties

xk minimises ‖xk − x̂‖A2 = ‖rk‖2;

uses a three-term recurrence relation.

Symmetric eigenvalue intervals: convergence bound gives

k ∝
√
κ(A2) = κ(A).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CR Algorithm

choose x0

compute r0 = b− Ax0

set p0 = r0

compute Ap0

for k = 0 until convergence do
αk = rTk rk/(Apk)TApk
xk+1 = xk + αkpk
rk+1 = rk − αkApk
βk = rTk+1rk+1/r

T
k Ark

pk+1 = rk+1 + βkpk
Apk+1 = Ark+1 + βkApk

end do

can be implemented with one MVM per iteration

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Alternative approach

Potential problems with CR:

breakdown may occur: denominator of αk could be zero (or
close to zero);

CR algorithm is unstable in this form.

Possible solution:

generate an orthonormal basis for κ(A, r0, k) in a more stable
way, retaining the cheap three-term recurrence.

⇒ mathematically equivalent but stable method . . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Alternative approach

Potential problems with CR:

breakdown may occur: denominator of αk could be zero (or
close to zero);

CR algorithm is unstable in this form.

Possible solution:

generate an orthonormal basis for κ(A, r0, k) in a more stable
way, retaining the cheap three-term recurrence.

⇒ mathematically equivalent but stable method . . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

MINRES

Paige and Saunders (1975)

Construct iterates xk = x0 + Vkyk with properties

xk minimises ‖rk‖2

uses three-term recurrence relation

Vk = [v1, v2, . . . , vk]

vk form an orthonormal basis for κ(A, r0, k)

use Lanczos method to find vk

solve resulting least squares problem for yk using Givens
rotations and QR factorisation

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

MINRES Algorithm

Fischer (1996)

choose x0

compute v̂0 = b− Ax0 initialise
set β0 = ‖v̂0‖2, η0 = β0

set c0 = 1, c−1 = 1, s0 = 0, s−1 = 0

for k = 0 until convergence do

vk+1 = v̂k/βk
αk+1 = vTk+1Avk+1 Lanczos
v̂k+1 = (A− αk+1I)vk+1 − βkvk
βk+1 = ‖v̂0‖2

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

r̂1 = ckαk+1 − ck−1skβk

r1 =
√
r̂1

2 + β2
k+1 QR

r2 = skαk+1 + ck−1ckβk
r3 = sk−1βk

ck+1 = r̂1/r1 Givens
sk+1 = βk+1/r1

wk+1 = (vk+1 − r2wk − r3wk−1)/r1
xk+1 = xk + cηkw update
ηk+1 = −sηk

end do

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some alternative methods

SYMMLQ
Paige and Saunders (1975)

Also has a strong Lanczos connection, but minimises the 2-norm of
the error rather than the residual.

ORTHODIR
Fletcher (1976)

ORTHOMIN/ORTHORES
Chandra et al. (1977)

Equivalent to MINRES, closer in implementation to CG/CR.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some alternative methods

SYMMLQ
Paige and Saunders (1975)

Also has a strong Lanczos connection, but minimises the 2-norm of
the error rather than the residual.

ORTHODIR
Fletcher (1976)

ORTHOMIN/ORTHORES
Chandra et al. (1977)

Equivalent to MINRES, closer in implementation to CG/CR.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Nonsymmetric Systems

Faber and Manteuffel (1984 & 1987): there is no Krylov type
method which retains both

(i) minimisation property

(ii) short-term recurrence

Normal Equations
solve ATAx = ATb using CG

Minimum Residual Methods
retain (i), sacrifice (ii)

Biorthogonalisation Methods
retain (ii), sacrifice (i)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Nonsymmetric Systems

Faber and Manteuffel (1984 & 1987): there is no Krylov type
method which retains both

(i) minimisation property

(ii) short-term recurrence

Normal Equations
solve ATAx = ATb using CG

Minimum Residual Methods
retain (i), sacrifice (ii)

Biorthogonalisation Methods
retain (ii), sacrifice (i)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CGNR

Hestenes and Stiefel (1952)

Apply CG to normal equations ATAx = ATb.

Construct iterates

xk ∈ x0 + span{AT r0, (A
TA)AT r0, . . . , (A

TA)k−1AT r0}

satisfying

xk minimises ‖xk − x̂‖ATA = ‖rk‖2

uses three-term recurrence relation

Convergence analysis gives

k ∝
√
κ(ATA) = κ(A)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

CGNR

Hestenes and Stiefel (1952)

Apply CG to normal equations ATAx = ATb.

Construct iterates

xk ∈ x0 + span{AT r0, (A
TA)AT r0, . . . , (A

TA)k−1AT r0}

satisfying

xk minimises ‖xk − x̂‖ATA = ‖rk‖2

uses three-term recurrence relation

Convergence analysis gives

k ∝
√
κ(ATA) = κ(A)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Generalised Minimal Residual Method (GMRES)

Saad and Schultz (1986)

Construct iterates xk = x0 + Vkyk with properties

xk minimises ‖rk‖2

no short-term recurrence

Vk = [v1, v2, . . . , vk]

vk form an orthonormal basis for κ(A, r0, k)

Use the Arnoldi method to find vk

solve resulting least squares problem for yk using Givens
rotations and QR factorisation

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Convergence of GMRES

Suppose A is diagonalisable as A = VΛV−1.

Residual minimisation property gives

‖rk‖2 ≤ min
p∈Π1

k

max
z∈R
|p(z)|‖V ‖2‖V−1‖2‖r0‖2

where R is any region containing the eigenvalues.

Usually very difficult to obtain any reasonable estimate of the
eigenvector condition number ‖V ‖2‖V−1‖2.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Convergence of GMRES

Suppose A is diagonalisable as A = VΛV−1.

Residual minimisation property gives

‖rk‖2 ≤ min
p∈Π1

k

max
z∈R
|p(z)|‖V ‖2‖V−1‖2‖r0‖2

where R is any region containing the eigenvalues.

Usually very difficult to obtain any reasonable estimate of the
eigenvector condition number ‖V ‖2‖V−1‖2.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Convergence of GMRES

Suppose A is diagonalisable as A = VΛV−1.

Residual minimisation property gives

‖rk‖2 ≤ min
p∈Π1

k

max
z∈R
|p(z)|‖V ‖2‖V−1‖2‖r0‖2

where R is any region containing the eigenvalues.

Usually very difficult to obtain any reasonable estimate of the
eigenvector condition number ‖V ‖2‖V−1‖2.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some observations

Other convergence analysis based on singular values,
pseudo-eigenvalues or field of values.

Many alternative implementations of GMRES available e.g.
based on Householder orthogonalisation: extra work but
better numerical properties.

Restarted GMRES

restart GMRES every m steps;
no simple rule for choosing m: convergence speed may vary
drastically with different values;
some convergence analysis available.

Lots of work on adapting and improving GMRES variants.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some observations

Other convergence analysis based on singular values,
pseudo-eigenvalues or field of values.

Many alternative implementations of GMRES available e.g.
based on Householder orthogonalisation: extra work but
better numerical properties.

Restarted GMRES

restart GMRES every m steps;
no simple rule for choosing m: convergence speed may vary
drastically with different values;
some convergence analysis available.

Lots of work on adapting and improving GMRES variants.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some observations

Other convergence analysis based on singular values,
pseudo-eigenvalues or field of values.

Many alternative implementations of GMRES available e.g.
based on Householder orthogonalisation: extra work but
better numerical properties.

Restarted GMRES

restart GMRES every m steps;
no simple rule for choosing m: convergence speed may vary
drastically with different values;
some convergence analysis available.

Lots of work on adapting and improving GMRES variants.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some observations

Other convergence analysis based on singular values,
pseudo-eigenvalues or field of values.

Many alternative implementations of GMRES available e.g.
based on Householder orthogonalisation: extra work but
better numerical properties.

Restarted GMRES

restart GMRES every m steps;
no simple rule for choosing m: convergence speed may vary
drastically with different values;
some convergence analysis available.

Lots of work on adapting and improving GMRES variants.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Biorthogonalisation Methods

BiCG method

Construct iterates

xk = x0 + span{r0,Ar0, . . . ,A
k−1r0}

with properties

rk ⊥ span{r̂0,Ar̂0, . . . ,A
k−1r̂0}

uses three-term recurrence relation

Uses nonsymmetric Lanczos: generate two sets of
biorthogonal vectors.

Potential problems:

wild oscillations in ‖rk‖2

possible breakdowns: p̂Tk−1Apk−1 = 0, r̂Tk−1rk−1 = 0
possible solution: look-ahead Lanczos

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Biorthogonalisation Methods

BiCG method

Construct iterates

xk = x0 + span{r0,Ar0, . . . ,A
k−1r0}

with properties

rk ⊥ span{r̂0,Ar̂0, . . . ,A
k−1r̂0}

uses three-term recurrence relation

Uses nonsymmetric Lanczos: generate two sets of
biorthogonal vectors.

Potential problems:

wild oscillations in ‖rk‖2

possible breakdowns: p̂Tk−1Apk−1 = 0, r̂Tk−1rk−1 = 0
possible solution: look-ahead Lanczos

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Biconjugate Gradient Method (BiCG)

Lanczos (1952), Fletcher (1976)

choose x0, compute p0 = r0 = b− Ax0

choose r̂0

set p̂0 = r̂0, ρ0 = r̂T0 r0

for k = 1, 2, . . . until convergence do
σk−1 = p̂Tk−1Apk−1

αk−1 = ρk−1/σk−1

xk = xk−1 + αk−1pk−1

rk = rk−1 − αk−1Apk−1

r̂k = r̂k−1 − αk−1A
T p̂k−1

ρk = r̂Tk rk
βk−1 = ρk/ρk−1

pk = rk + βkpk−1

p̂k = r̂k + βk p̂k−1

end

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Quasi-Minimal Residual Method (QMR)

Freund and Nachtigal (1991)

Based on GMRES using nonsymmetric Lanczos with a
biorthogonal basis.

Too expensive to minimise ‖rk‖2: minimise “nearby” quantity:
quasi-minimal.

Avoid Lanczos breakdown: do l steps of look-ahead Lanczos.

Incurable breakdown (unlikely due to round-off).

Some convergence results are available.

If A is symmetric, QMR ≡ MINRES.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Transpose-free Methods

Transpose-Free QMR (TFQMR)
Freund (1991), Chan et al. (1991), Freund and Szeto (1991)

AT can be eliminated by choosing a suitable starting vector

Conjugate Gradients Squared (CGS)
Sonneveld (1989)

construct iterates x2k = x0 + κ(A, r0, 2k)

residual polynomials of CG are squared

magnifies erratic convergence of BiCG

may diverge when BiCG converges

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Transpose-free Methods

Transpose-Free QMR (TFQMR)
Freund (1991), Chan et al. (1991), Freund and Szeto (1991)

AT can be eliminated by choosing a suitable starting vector

Conjugate Gradients Squared (CGS)
Sonneveld (1989)

construct iterates x2k = x0 + κ(A, r0, 2k)

residual polynomials of CG are squared

magnifies erratic convergence of BiCG

may diverge when BiCG converges

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

BiCGSTAB

van der Vorst (1990)

Construct iterates x2k = x0 + κ(A, r0, 2k).

Residual polynomial updated with a linear factor at each step.

Free parameter µk determined via a local steepest descents
problem.

Convergence typically much smoother than CGS.

BiCGStab2, Gutnecht (1993)
BiCGstab(l), Sleijpen and Fokkema (1993)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Example: Calculation of Invariant Tori

a(X ,Y)
∂s

∂X
+ b(X ,Y)

∂s

∂Y
+ c(X ,Y)s = ψ

0 20 40 60 80 100 120 140 160 180 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

BICG

BiCGStab2

BiCGstab(2)

CGNR

GMRES

QMR

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Which method to choose?

How Fast Are Nonsymmetric Matrix Iterations?
N.M. Nachtigal, S.C. Reddy & L.N. Trefethen

SIAM J. MATRIX ANAL. APPL. 13(3), 1992

Compare three different methods:

CGNR (CG for normal equations)
GMRES (minimises but no short-term recurrence)
CGS (short-term recurrence but no minimisation)

Eight test examples to compare the performance.

1 example: all methods good.
1 example: all methods bad.
3 examples: each method is best.
3 examples: each method is worst.

Final choice often depends on application. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Which method to choose?

How Fast Are Nonsymmetric Matrix Iterations?
N.M. Nachtigal, S.C. Reddy & L.N. Trefethen

SIAM J. MATRIX ANAL. APPL. 13(3), 1992

Compare three different methods:

CGNR (CG for normal equations)
GMRES (minimises but no short-term recurrence)
CGS (short-term recurrence but no minimisation)

Eight test examples to compare the performance.

1 example: all methods good.
1 example: all methods bad.
3 examples: each method is best.
3 examples: each method is worst.

Final choice often depends on application. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Which method to choose?

How Fast Are Nonsymmetric Matrix Iterations?
N.M. Nachtigal, S.C. Reddy & L.N. Trefethen

SIAM J. MATRIX ANAL. APPL. 13(3), 1992

Compare three different methods:

CGNR (CG for normal equations)
GMRES (minimises but no short-term recurrence)
CGS (short-term recurrence but no minimisation)

Eight test examples to compare the performance.

1 example: all methods good.
1 example: all methods bad.
3 examples: each method is best.
3 examples: each method is worst.

Final choice often depends on application. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Which method to choose?

How Fast Are Nonsymmetric Matrix Iterations?
N.M. Nachtigal, S.C. Reddy & L.N. Trefethen

SIAM J. MATRIX ANAL. APPL. 13(3), 1992

Compare three different methods:

CGNR (CG for normal equations)
GMRES (minimises but no short-term recurrence)
CGS (short-term recurrence but no minimisation)

Eight test examples to compare the performance.

1 example: all methods good.
1 example: all methods bad.
3 examples: each method is best.
3 examples: each method is worst.

Final choice often depends on application. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Summary

symmetric positive definite CG

symmetric indefinite CR, MINRES, SYMMLQ

nonsymmetric

normal equations

CGNR

minimisation

GMRES, GMRES(m)

biorthogonalisation

BiCG, CGS, BiCGSTAB, BiCGstab(l), QMR

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Examples of Stopping Criteria

standard tests: ‖rk‖2 ≤ ε, ‖rk‖2

‖r0‖2
≤ ε

condition number dependent (e.g. Ashby et al. (1990)):

‖xk − x̂‖2

‖x0 − x̂‖2
≤ κ(A)

‖rk‖2

‖r0‖2
≤ ε

‖xk − x̂‖A
‖x0 − x̂‖A

≤
(
κA(A)

∣∣∣∣γkγ0

∣∣∣∣) 1
2

≤ ε

backward error analysis (e.g. Arioli et al. (1991)):

‖rk‖∞
‖A‖∞‖xk‖1 + ‖r0‖∞

≤ ε

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Examples of Stopping Criteria

standard tests: ‖rk‖2 ≤ ε, ‖rk‖2

‖r0‖2
≤ ε

condition number dependent (e.g. Ashby et al. (1990)):

‖xk − x̂‖2

‖x0 − x̂‖2
≤ κ(A)

‖rk‖2

‖r0‖2
≤ ε

‖xk − x̂‖A
‖x0 − x̂‖A

≤
(
κA(A)

∣∣∣∣γkγ0

∣∣∣∣) 1
2

≤ ε

backward error analysis (e.g. Arioli et al. (1991)):

‖rk‖∞
‖A‖∞‖xk‖1 + ‖r0‖∞

≤ ε

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Examples of Stopping Criteria

standard tests: ‖rk‖2 ≤ ε, ‖rk‖2

‖r0‖2
≤ ε

condition number dependent (e.g. Ashby et al. (1990)):

‖xk − x̂‖2

‖x0 − x̂‖2
≤ κ(A)

‖rk‖2

‖r0‖2
≤ ε

‖xk − x̂‖A
‖x0 − x̂‖A

≤
(
κA(A)

∣∣∣∣γkγ0

∣∣∣∣) 1
2

≤ ε

backward error analysis (e.g. Arioli et al. (1991)):

‖rk‖∞
‖A‖∞‖xk‖1 + ‖r0‖∞

≤ ε

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some Relevant Books and Review Papers

Iterative Solution of Linear Systems, Freund, Golub and
Nachtigal, Acta Numerica (1991)

Templates for the Solution of Linear Systems. . . ,
Barrett et al., SIAM (1994)

Iterative Solution Methods,
Axelsson, CUP (1996)

Iterative Methods for Sparse Linear Systems,
Saad, PWS (1996)

Iterative Methods for Solving Linear Systems,
Greenbaum, SIAM (1997)

Iterative Solution of Linear Systems in the 20th Century, Saad
and van der Vorst, J. Comp. and Appl. Math. 123 (2000)

Iterative Krylov Methods for Large Linear Systems,
van der Vorst, CUP (2003)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Preconditioning

Idea: instead of solving Ax = b, solve

M−1Ax = M−1b

for some preconditioner M.

Choose M so that

(i) eigenvalues of M−1A are well clustered;
(ii)Mu = r is easily solved.

Extreme cases:

M = A: good for (i), bad for (ii);
M = I : good for (ii), bad for (i).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Preconditioning

Idea: instead of solving Ax = b, solve

M−1Ax = M−1b

for some preconditioner M.

Choose M so that

(i) eigenvalues of M−1A are well clustered;
(ii)Mu = r is easily solved.

Extreme cases:

M = A: good for (i), bad for (ii);
M = I : good for (ii), bad for (i).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Preconditioning

Idea: instead of solving Ax = b, solve

M−1Ax = M−1b

for some preconditioner M.

Choose M so that

(i) eigenvalues of M−1A are well clustered;
(ii)Mu = r is easily solved.

Extreme cases:

M = A: good for (i), bad for (ii);
M = I : good for (ii), bad for (i).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Preconditioned Conjugate Gradient Method

Concus, Golub & O’Leary (1976)

choose x0

compute r0 = b− Ax0

solve M r̂0 = r0

set p0 = r0

for k = 0 until convergence do
αk = rTk r̂k/p

T
k Apk

xk+1 = xk + αkpk
rk+1 = rk − αkApk
solve M r̂k+1 = rk+1

βk = rTk+1r̂k+1/r
T
k r̂k

pk+1 = r̂k+1 + βkpk
end do

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Practical Implementation

Preconditioner M:

Left preconditioning

M−1Ax = M−1b

Right preconditioning

AM−1y = b, x = M−1y

Preconditioner M = M1M2:

Split preconditioning

[M−1
1 AM−1

2]y = M−1
1 b, x = M−1

2 y

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Practical Implementation

Preconditioner M:

Left preconditioning

M−1Ax = M−1b

Right preconditioning

AM−1y = b, x = M−1y

Preconditioner M = M1M2:

Split preconditioning

[M−1
1 AM−1

2]y = M−1
1 b, x = M−1

2 y

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

symmetric: split preconditioner retains symmetry.

positive definite: if M2 = MT
1 , resulting

system is also symmetric positive definite.

indefinite: M must be symmetric positive
definite for MINRES; M can be indefinite with QMR.

nonsymmetric:

split: analysis may be easier.
left: if M−1A ' I , r̃k = M−1A(xk − x̂) ' xk − x̂, i.e.,

‖r̃k‖2 ' ‖xk − x̂‖2.

right: minimise in same norm, i.e.,

‖r̃k‖2 = ‖rk‖2.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

symmetric: split preconditioner retains symmetry.

positive definite: if M2 = MT
1 , resulting

system is also symmetric positive definite.

indefinite: M must be symmetric positive
definite for MINRES; M can be indefinite with QMR.

nonsymmetric:

split: analysis may be easier.
left: if M−1A ' I , r̃k = M−1A(xk − x̂) ' xk − x̂, i.e.,

‖r̃k‖2 ' ‖xk − x̂‖2.

right: minimise in same norm, i.e.,

‖r̃k‖2 = ‖rk‖2.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Connection with stationary methods

matrix splitting A = M − N

Iterates

xk+1 = M−1Nxk + M−1b = xk + M−1rk

where the error satisfies

xk − x̂ = (I −M−1A)k(x0 − x̂).

If (I −M−1A) is small, expect rapid convergence.

So good preconditioner ≡ good splitting operator.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Connection with stationary methods

matrix splitting A = M − N

Iterates

xk+1 = M−1Nxk + M−1b = xk + M−1rk

where the error satisfies

xk − x̂ = (I −M−1A)k(x0 − x̂).

If (I −M−1A) is small, expect rapid convergence.

So good preconditioner ≡ good splitting operator.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Stationary Methods as Preconditioners

Jacobi (diagonal scaling)

very simple to implement, minimal storage requirements
scales condition number
still competitive for extremely large 3D problems: may be
better to do more cheaper iterations than fewer expensive ones

Gauss-Seidel, SOR

for CG, M must be symmetric
applying the method twice per iteration (once forward then
once backward)

Preconditioners based on stationary methods are typically easy
to use and widely applicable. But there is a whole research
field dedicated to other methods. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Stationary Methods as Preconditioners

Jacobi (diagonal scaling)

very simple to implement, minimal storage requirements
scales condition number
still competitive for extremely large 3D problems: may be
better to do more cheaper iterations than fewer expensive ones

Gauss-Seidel, SOR

for CG, M must be symmetric
applying the method twice per iteration (once forward then
once backward)

Preconditioners based on stationary methods are typically easy
to use and widely applicable. But there is a whole research
field dedicated to other methods. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Stationary Methods as Preconditioners

Jacobi (diagonal scaling)

very simple to implement, minimal storage requirements
scales condition number
still competitive for extremely large 3D problems: may be
better to do more cheaper iterations than fewer expensive ones

Gauss-Seidel, SOR

for CG, M must be symmetric
applying the method twice per iteration (once forward then
once backward)

Preconditioners based on stationary methods are typically easy
to use and widely applicable. But there is a whole research
field dedicated to other methods. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Incomplete LU Factorisation

Step 1: select set J = {(i , j) : 1 ≤ i , j ≤ N} of index pairs
(including all (i , i))

Step 2: perform LU factorisation and restrict all non-zeros to
entries in J

A = LU − R = M − R

rij = 0, (i , j) ∈ J, rii = α
∑
i 6=j

rij

ILU factorisations do not always exist

very sequential in nature

block matrix analogues

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some Variations on ILU

J ≡ nonzero entries in A

α = 0: ILU, Meijerink and van der Vorst (1977)
α = 1: MILU, Gustafsson (1978)

ILU(N), MILU(N)
J includes N extra diagonals

ILU with Drop Tolerance, Munksgaard (1980)
Drop all entries of fill-in with absolute value less than
τ ∈ [10−4, 10−2].

Shifted ILU, Manteuffel (1978,1980)
Make A more diagonally dominant by factorising

Ā = D +
1

1 + γ
C .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Sample Eigenvalue Plots

seven point finite difference stencil

Incomplete Cholesky Modified Incomplete Cholesky

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

SParse Approximate Inverse (SPAI)

Minimise ‖AM − I‖ in the Frobenius norm.

Approximate inverse computed explicitly so can be applied as
a preconditioner.

Sparsity pattern of approximate inverse calculated
dynamically.

User controls the quality and cost:

if M is sparse, it is cheap to compute but may not improve
things much;
as M becomes dense, it becomes more expensive to compute
optimal preconditioner; lies between these two extremes and is
problem and computer architecture dependent.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Polynomial Preconditioning

Apply CG to p(B−1A)B−1Ax = p(B−1A)B−1b i.e. use

M−1 = p(B−1A)B−1

so that u = M−1r is easily solved.

Choose B to be a matrix splitting from stationary methods:
e.g.

B from SSOR gives m-step CG method (Adams (1985)),
B = I from Richardson (Ashby (1987)),
applying preconditioner involves only MVMs so may be good
for vector/parallel machines.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Examples of Preconditioners for FE problems

Element-By-Element Method
Preconditioner is a product of factors of assembly of individual
element matrices.

Element Factorisation Method
Preconditioner is a product of assembly of individual element
matrix factorisations.

Hierarchical Basis Preconditioning
Based on using hierarchical bases for the finite element spaces
instead of the usual nodal bases.

. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Domain Decomposition

Some PDE solvers can be used as preconditioners.

Domain decomposition: break down underlying elliptic PDE
problem into distinct parts that can be solved separately.

Piece results together to get solution to whole problem .

Use different preconditioners for different parts of the grid.

Two main types:

overlapping methods: additive/multiplicative Schwarz;

nonoverlapping methods: substructuring.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Multigrid Methods

Developed for solving boundary value problems.

geometric multigrid (GMG)

Based on sequence of physical grids associated with the
problem.

algebraic multigrid (AMG)

No need for a physical grid, based on sparse matrix properties.

Both methods very powerful when used either as solvers in
their own right or as preconditioners.

A Multigrid Tutorial, Briggs et al. (2000).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Multigrid Cycles

V−cycle W−cycle full MG

2h

h

4h

Ω

Ω

Ω

down arrows represent restriction

up arrows represent prolongation

smoothing steps are performed on each level

patterns extend to as many grids as needed

use direct method on coarsest grid

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

GMG Convergence

For elliptic PDE problems on uniform grids, convergence
analysis can be done using Fourier modes but general
convergence analysis is tricky

With the right combination of components, the number of
operations involved is of the order of the total number of
unknowns in the linear system, i.e. work ∝ N.

This is the best possible (it takes N operations to write the
solution down!)

The number of iterations is independent of N and does not
grow as the underlying finite element grid is refined.

MG is scalable and is amenable to parallel implementation.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

AMG Convergence

No grid needed, works on a sparse matrix.

Coarse-grid unknowns are a subset of the variables, identified
by numerical indices.

Two-grid correction scheme exactly the same as for GMG,
with recursive calls used to set up various patterns on a full
series of “grids”.

It has a broad range of applicability but the theory of its
convergence behaviour is relatively undeveloped.

AMG replicates the attractive O(N) behaviour shown by
GMG, which is great for, e.g., unstructured grid problems.

Developments towards element-based versions for
parallelisation (e.g. BoomerAMG).

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Points to note on multigrid

MG applications include elliptic,parabolic and hyperbolic
PDEs, integral equations, evolution problems, . . .

There are also nonlinear and anisotropic versions.

MG methods often used as preconditioners:

typically only one or two V-cycles are required per CG/GMRES
iteration;

this is often more robust as an MG preconditioner tends to be
less sensitive to the tuning of specifics such as grid transfer
operators, type and amount of smoothing, etc.

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Far too many other methods to mention!

Block preconditioners.

Constraint preconditioners for saddle-point problems.

Low-rank updates to preconditioners for solving a sequence of
problems.

All-at-once preconditioners for large time-dependent problems.

Preconditioners using randomized linear algebra.

Stochastic preconditioners for problems with uncertain
coefficients.

Tensor-based preconditioners for reducing memory
requirements.

Preconditioners designed for HPC architechtures.

. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Examples of software packages

Many methods available in Matlab.

Some examples of packages on www.netlib.org:

ITPACK (FORTRAN),
linalg/laspack (C),
linalg/qmrpack (FORTRAN),
linalg/templates (C, FORTRAN),
linalg/cg (PVM).

Some other accessible codes:

HYPRE (FORTRAN,C),
AZTEC (MPI),
LAPACK (FORTRAN),
TRILINOS (C++).
PETSc (FORTRAN,C,Python).
IFISS (Matlab, Octave)
FENicS (C++,Python)

Don’t re-invent the wheel. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Examples of software packages

Many methods available in Matlab.

Some examples of packages on www.netlib.org:

ITPACK (FORTRAN),
linalg/laspack (C),
linalg/qmrpack (FORTRAN),
linalg/templates (C, FORTRAN),
linalg/cg (PVM).

Some other accessible codes:

HYPRE (FORTRAN,C),
AZTEC (MPI),
LAPACK (FORTRAN),
TRILINOS (C++).
PETSc (FORTRAN,C,Python).
IFISS (Matlab, Octave)
FENicS (C++,Python)

Don’t re-invent the wheel. . .

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

Some relevant books and papers

Preconditioning Techniques for Large Linear Systems: A
Survey, Benzi, J. Comput. Phys. (2002)

Preconditioning, Wathen, Acta Numerica (2015)

Iterative Methods and Preconditioning for Large and Sparse
Linear Systems with Applications, Durastante and Bertaccini,
Chapman and Hall (2018)

Preconditioners for Krylov subspace methods: An overview,
Pearson and Pestana, GAMM-Mitteilungen (2020)

Preconditioning for linear systems, Jarlebring et al.,
independently published (2020)

Iterative Methods and Preconditioners for Systems of Linear
Equations, Ciaramella and Gander, SIAM (2022)

Alison Ramage A.Ramage@strath.ac.uk Introduction to Iterative Solvers and Preconditioning

