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Convection-Diffusion in 2D

—eViu(z,y) + w.Vu(z,y) = f(z,y) in QeR’
Y) g on 99

=
=

convective velocity (‘wind’) w
diffusion parameter ¢ << 1

discretisation parameter 5

, h
mesh Péclet number P, = H‘;’H
€
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Streamline Diffusion Method

streamline diffusion FEM, square bilinear elements

oh
e(Vup, Vup) + (w-Vup,vp) + wl ——(w - Vuy, w - Vuy,)
oh
— (f7 ’Uh) H H (f W - VUh) Yy, € Vj,
e P,<1: 6=0 Galerkin FEM

Copper Mountain 2004 — p.3/2:



Model Problem

grid-aligned flow with vertical wind and f = 0
—eV2u(z,y) + (0,1).Vu(x,y) =0

Dirichlet boundary conditions

computational molecule:

Mo+ —L[(26—1)h+4e] —1[(26—1)h+¢] —L[(26—1)h+4€]
N T /

My 5(0h—e) = 5(0h+2¢)  — 5(0h—e)
/ l N\

M3 1 —L[(264+1)h+4¢] —L1[(2641)h+€ — L[(26+1)h+4e]

Copper Mountain 2004 — p.4/2:



Coefficient Matrix

- My Mo 0 7
Ms My Mo
A — . .
Ms My Mo
0 Ms My

eigenvectors and eigenvalues:

) v _ Jm
Mivj = A;jvj, Aj = mic+ 2mq, cos N
o xrs _ s
Movi = 0;vj, 0;=mge~+ 2may coS N
JTT

Msvj = vy, 7 =m3c+ 2msg, cos 5

> [ ir . 2jn (N =1)r]”
Vj: — |sin —, SN ———, ..., 011
N

N N N
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Multigrid Method

e two-grid method
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Multigrid Method
e two-grid method
o coefficient matrices: A, (fine grid), A. (coarse grid)

direct discretisation on coarse grid
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Multigrid Method

two-grid method

coefficient matrices: A, (fine grid), A. (coarse grid)

prolongation: bilinear interpolation P

restriction: transpose of prolongation P’
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Multigrid Method
two-grid method
coefficient matrices: A, (fine grid), A. (coarse grid)
prolongation: bilinear interpolation P
restriction: transpose of prolongation P’

smoothing: line Gauss-Seidel 54
v steps of pre-smoothing, no post-smoothing
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Multigrid Method
two-grid method
coefficient matrices: A, (fine grid), A. (coarse grid)
prolongation: bilinear interpolation P
restriction: transpose of prolongation P’

smoothing: line Gauss-Seidel 54
v steps of pre-smoothing, no post-smoothing

two-grid iteration matrix M = (I — PA_'PT A;)SY

error equation

€L — Mek_l — Mke()
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Two-Grid Convergence Analysis

AIM:  find an upper bound for

| M|l = [|(1 = PAZ'PT Ap)S4ll2
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Two-Grid Convergence Analysis

AIM:  find an upper bound for

| M|l = [|(1 = PAZ'PT Ap)S4ll2

e Approach 1: bound ||M |2 directly
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Two-Grid Convergence Analysis

AIM:  find an upper bound for

| M|l = [|(1 = PAZ'PT Ap)S4ll2

e Approach 1: bound ||M |2 directly

e Approach 2: write

M = (A7 = PATTPY)(ApSY) = MaMs

and bound || M 4], ||Ms]|2 separately
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Transformation: Coefficient Matrix (1)

N7 elements,  n% unknowns (njy = N;—1)

A

Vf = [V1V2 . an} , Vi = diag(Vf, V)

M1Vf = VfA, MQVf = sz, Mgi = VfF

= [
]

. )
Vi AgVi =Ty =

= [
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Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

- T

T4

0

15

Tnf—l

In; |

Tj — tridiag('yj, )\j, Oj)

Ay = QsTrQ}

Qp = Vylly
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Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

T 0 -
13
Tl =Ty =
Tnf—l
0 In, |

1 = tridiag('yj, Aj, Oj)
Ap=QpTyQp  Qp =Vl
coarse grid: A, = Q.7.Q! Q. = V.II,
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Transformation: Smoothing Matrix

block matrix splitting: Ar=Dg—La—Uy
Gauss-Seidel smoothing matrix:

Sa=(Da—La) 'Ua=1—-(Dy—La) A,

transformation:
Sa=QfSrQj

where Sp=1—(Dy— Ly) 'T; is block-diagonal
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Transformation: Prolongation Matrix

2D prolongation matrix: P=L®L

1

1

DO

DO DO =
p—
DO

rt-

1

DO —
DO —
L

A

transformation: Q; = (I; @ V)T, Q. = (I, @ V)Tl
P=QiPQ.=A"®L

e AN;—1 |
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Transformation: lteration Matrix (1)

M = (I-PA'PTA;SY
= (I - PQ.T.'Q: PTQsTQ})Sy
= Qs(I = PT. PITy)Q; (QsSrQy)"
= Qs (I - PT'PTTy) S5QF
=M = Q;MQ;

where M = (I — PT'P'Ty) SY

@ s Is orthogonal:
| M[2 = [|M]]2
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Transformed Iteration Matrix (2)
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Transformed Iteration Matrix (2)

nz = 637

1=1,....n¢

nz = 637
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The Story So Far...

o 1} x n} two-grid iteration matrix A

e Fourier transformation converts 2D problem to a set of
ns problems with 1D structure

e ||[M]||2 can be found from norms of N. smaller problems
ne Of size 2ny x 2ny, 1 of Size ny x ny
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The Story So Far...

n; x n} two-grid iteration matrix A

Fourier transformation converts 2D problem to a set of

ns problems with 1D structure

|M]|» can be found from norms of V. smaller problems

ne Of size 2ny x 2ny, 1 of Size ny x ny

IDEA: analyse periodic versions of these new problems

n. Of size 2N, x 2N¢, 1 of size Ny x Ny

gain insight into Dirichlet problem behaviour?
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Periodic version

replace B;, C; by periodic versions, e.g.

B;)er _ [[ . pfer (nger)j—l (p]pe?“)T(T]]ge?“)j] S;)B’I“

transform using coarse grid periodic eigenvectors
each B;, C; becomes block diagonal with 2 x 2 blocks

permute into block diagonal form

......

......

2-norm given by maximum 2-norm of the 4 x 4 blocks
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Analytic result

e With periodic approximation, when P, > 1

er \/ B+ cos (2mh)
Jageer ) = Y2

Independent of ¢
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Analytic result

e With periodic approximation, when P, > 1

2P| — \/3 + cos (27h)
V2(5)
e as i Is small in practice,
2
[hery o Y2

5V
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Analytic result

e With periodic approximation, when P, > 1

2P| — \/3 + cos (27h)
V2(57)
e as i Is small in practice,
2
3y e Y2

e wWhen P, < 1, analysis is more detailed
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Analytic result

e With periodic approximation, when P, > 1

2P| — \/3 + cos (27h)
V2(57)
e as i Is small in practice,
2
3y e Y2

e wWhen P, < 1, analysis is more detailed

Does this periodic-type analysis correctly predict
Dirichlet problem behaviour?
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Model Problem Results (1)

10°

. S W B e e S S S B s G M S B B S B me me me .

10"

107

-11 -10 -9 -8 =7 -6 -5

log1o ([M]|2) Vs logs (€)
P, > 1 only

periodic: dotted lines
Dirichlet: solid lines
h fixed for each line

periodic — ¥2 ~ 0.2828

Dirichlet — 0.2
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Model Problem Results (2)

o logyo (|[M]]2) vs log; (¢)
e P, <1only

e periodic: dotted lines
e Dirichlet: solid lines
e | fixed for each line

® |/ —

e Not a good match!
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MG lteration Counts
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™

P, <1

MG-like convergence for any value of P,
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Explanation?

e for P, < 1, iteration matrix M has one ‘bad’ eigenvalue

e artificially ‘removing’ this eigenvalue gives

107+

10—0,5 |

107081\

10—047

10781

e P, <1only
e periodic: ||[MP"||o
e Dirichlet: \/Xo(MT M)

periodic-type analysis does not capture the effect of this
eigenvalue
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Remarks

e Linear algebra gives useful insight into convergence of
two-grid iteration.
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Remarks

e Linear algebra gives useful insight into convergence of
two-grid iteration.

e Separate approximation and smoothing matrices:

e periodic-type analysis for smoothing matrix norm is
representative of Dirichlet problem behaviour for all
values of 7,

e periodic-type analysis for approximation matrix norm
IS representative of Dirichlet problem behaviour for
P, > 1: for P, < 1, one ‘bad’ eigenvalue again
causes trouble.
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Remarks

e Linear algebra gives useful insight into convergence of
two-grid iteration.

e Separate approximation and smoothing matrices:

e periodic-type analysis for smoothing matrix norm is
representative of Dirichlet problem behaviour for all
values of 7,

e periodic-type analysis for approximation matrix norm
IS representative of Dirichlet problem behaviour for
P, > 1: for P, < 1, one ‘bad’ eigenvalue again
causes trouble.

e Replacing the Dirichlet condition by a Neumann
condition on the outflow boundary leads to similar
computational results.
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