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Data assimilation

® Numerical weather prediction is an IVP: given initial
conditions, forecast atmospheric evolution.

@ Data assimilation is a technique for combining information
such as observational and background data with numerical
models to obtain the best estimate of state of a system (initial
condition).

@ Other application areas include hydrology, oceanography,
environmental science, data analytics, sensor networks. . .

@ Variational assimilation is used to find the optimal analysis
that minimises a specific cost function.
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Physical model

@ Evolution equation:

08— Eio(e) + (1),
©(0) = u,
ueX, te(0,T), fpecY=1Ly0,T;X)

true initial state
true state evolution
observation operator  Cops : Y — Yons

AR

observation error o
observations ©“obs = CobsP + &o
background error b
background function up =i+ &p
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Data assimilation problem

@ represent model in operator form via control-to-state mapping

o= R(u)

@ assume errors &,, &p are normal, unbiased and mutually
uncorrelated with positive definite covariance operators

Vi(-) = E[(5€p)x &b, Vo() = E[( o) Vope So]

@ DA problem: find v € X which minimises

L [ cts cts
J(V) = §<Vb 1V7 V>X + §<Vo 1Cobsl:‘) ‘ (U)V, CobsR ‘ (U)V>Yob5
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Hessian operator

@ define associated tangent linear operator

Rcts _ Rcts
R/(u)w = lim (ut7w) W ywex
T—r T

and adjoint

(w, R (1)w*) x = (R'(1)w,w*)y, VYweX,¥w*cY

@ Hessian of DA problem:

H(u) = Vb_1 + R/*(U) :bs VglcobsR/(U)
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Incremental 4D-Var

@ Represent functions using a finite-dimensional basis.

@ Rewrite as an unconstrained minimisation problem using
Lagrange's method.

@ Incremental approach: linearise evolution operator and solve
linearised problem iteratively.

@ Require a discrete version of the tangent linear model (TLM)
and its adjoint.

@ Each iteration requires one forward solution of the TLM
equations and one backward solution of the adjoint equations.
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Hessian matrix

@ Hessian of the cost function:

H=V, '+ RTCop Vs ConsR

obs

@ Discrete tangent linear operator R and its adjoint.
@ H is often too large to be stored in memory.
@ Action of applying H to a vector is available, but expensive:

@ involves both forward and backward solves with the linearised
evolution operator and its adjoint.
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Approximating the inverse Hessian

Why approximate 17
@ 77! represents an approximation of the Posterior Covariance
Matrix (PCM).
@ The PCM can be used to find confidence intervals and carry
out a posteriori error analysis.
@ H~1/2 can be used in ensemble forecasting.
o H~1, H~1/2 can be used for preconditioning in a
Gauss-Newton method (focus of this talk).
AIM: construct a limited-memory approximation to 2! using only
matrix-vector multiplication.
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Return to 4D-Var

@ Linear system (within a Gauss-Newton method):
’H(uk)éuk = G(uk)

Hessian of the cost function A
gradient of the cost function  G(uy)

@ Solve using Preconditioned Conjugate Gradient iteration
(needs only Hv).

@ Convergence depends on eigenvalues of the Hessian
H= Vb_l + RTCO—,[_,SVJICobsR'

@ Evaluating Hv is very expensive, so we need a good
preconditoner.
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First level preconditioning

@ Use the background covariance matrix V.

@ Projected Hessian:

H=(VY)THVY? =1+ (VY)TRTCL Vo Cops RV,

obs
@ Easy to recover H in the original space.

o Eigenvalues of H are usually clustered in a narrow band above
one, with few eigenvalues distinct enough to contribute
noticeably to the Hessian value.

[HABEN ET AL., COMPUTERS & FLUIDS 46 (2011)]

@ This makes H amenable to limited-memory approximation.
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Correlation matrix

o H! (scaled to have unit diagonal)

-0.02
-0.04
-0.06

-0.08
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Precon ned correlation matrix

@ H~1 (after first level preconditioning)
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Limited-memory approximation

@ Find n. leading eigenvalues and orthonormal eigenvectors
using the Lanczos method.

@ Construct approximation

H~I+ Z()\, — 1)u,-u,-T
i=1

@ Easy to evaluate matrix powers:

Ne
HP ~ | + Z()\f’ —1uju/
i=1
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Second level preconditioning

@ IDEA: Construct a multilevel approximation to H~! based on
a sequence of nested grids.

@ Discretise evolution equation on a grid with m 4 1 nodes
(level 0) to represent Hessian Hp

o Grid level k contains m; = m/2% + 1 nodes.

® @ & L4 —0—0—0—0 level0

® L L L ® level 1

e & ©® level 2

@ ldentity matrix /, on grid level k.
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Grid transfers with ‘“correction”

o Grid transfer based on piecewise cubic splines:

o Restriction matrix Rf from k = f to k = c.
@ Prolongation matrix Pf from k =cto k =f.

@ Construct new operators which transfer a matrix between a
course grid level ¢ and a fine grid level f.

@ From coarse to fine:
M. s = PE(M. — I.)RE + I
o From fine to coarse:

My—c = RL(M¢ — If)Pf + I
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Outline of multilevel concept

@ Given a symmetric positive definite operator Ap available on
the finest grid level in matrix-vector
product form:

© represent Ag on the coarsest grid level;

© use a local preconditioner to improve the eigenvalue
distribution;

© build a limited memory approximation to its inverse using the
Lanczos method (which forms the basis of the local
preconditioner at the next coarsest level);

© move up one grid level and repeat.
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Multilevel algorithm for H~!

@ Represent Hy at a given level (k, say):
Hosk = RY(Ho — o) P& + I
@ Precondition to improve eigenvalue spectrum:
Fos i = (B£+1)THO—>kB/I:+1

@ Find ny eigenvalues/eigenvectors of I:I0_>k using the Lanczos
method.

@ Approximate I:IO__I/kz:

N
~—1/2
At~y (

i=1

Ek
|
.

N———
£
[

=4
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Preconditioners

o Construct B,’f“ on level k 4+ 1, apply on level k.
@ On coarsest grid, level kK + 1 does not exist so set Bf“ = I.
@ For other levels, construct preconditioners recursively:

k+1 _ [ pk+23—1/2 k+1T _ [p=1/2 pk+2T
B, = | Byl Ho ki L By = |HoZki1Brii ok

@ Square brackets represent projection to the correct grid level
using “corrected” grid transfers, e.g.

[Mit1] i = RETH (Mier = hepa )Pl + I
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Finest level

@ We already have Hy, so precondition to obtain
flo = B HoBL

@ Find ng eigenvalues/eigenvectors of Ho using the Lanczos
method.

@ Approximate I:IO_I:

no
~ 1
-1 . ) T
Hy = =~ I + E <)\_/ 1) u;u;
i=1
@ Recover projected inverse Hessian using

Hy' = B3Fy B3
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Algorithm

@ use N = (ng,ni,...,nc) eigenvalues at each level

[A, U]=mlevd(Hoy, Ne)
for k=k,ke—1,...,0
compute by the Lanczos method
and store in memory
{)\L, U,’(}, = 1, R of H0_>k
using preconditioner B,’(H'1
end

@ storage:
_ 1 Nk 1 Nk —1 1 no
= Mo o A X A A A

A
_ 1 Nk 1 Nke—1 1 no
U = (U, Uk Ui g, Ul Uy U]
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@ Test using 1D Burgers' equation with initial condition

f(x) =0.1+0.35 [l—l—sin <47rx+3§>}, 0<x<1

@ 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, and 0.7 in [0, 1].

@ Multilevel preconditioning with four grid levels:

k 0 1 2 3
grid points | 401 201 101 51

Alison Ramage, University of Strathclyde Multilevel preconditioner for data assimilation with 4D-Var



Diagonal of H1

07 B
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Assessing approximation accuracy

@ Riemannian distance:

n 1/2
5(A,B) = ||In(B~A)| - = (Z ln2/\,->

@ Compare eigenvalues of H~1 and A~ on the finest grid level
k = 0 using _
S(H™L, H™Y)

D=5

@ Vary number of eigenvalues chosen on each grid level

Ne = (ng, n1, n2, n3)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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PCG iteration for one Newton step

@ measurement units

@ memory: length of vector on finest grid L
e cost: cost of HVP on finest grid M

Preconditioner | # CG iterations | storage | cost

none 57 oL 57M
MG(400,0,0,0) 1 400L | 402M
MG(4,8,16,32) 4 16L 34M
MG(0,8,16,32) 5 12L 14M
MG(0,0,16,32) 8 8L 10M
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Hessian decomposition

@ partition domain into subregions and compute local Hessians

H' such that ,

H(u)=1+> (H'(u)-1)

=1

o fewer eigenvalues required for limited-memory representation
of each H'

@ local Hessians can be computed in parallel

@ H' need not be computed at finest grid level:

L

Hic(ur) = le+ > (Hi(ui) = li)

=1

@ could run local rather than global model
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Practical approach: version 1

Compute limited-memory approximations to local
sensor-based Hessians on level | using n; eigenpairs.

Assemble these to form H,, then apply mlevd to H, based on
a fixed Ne.

Local Hessians cheaper to compute.

Additional user-specified parameter(s) /, n; needed.

@ More memory required as local Hessians must also be stored.
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Numerical results

Preconditioner N,
P1 (200,0,0,0)
P2 (0,8,16,32)
P3 (0,4,8,16)

== ]| —
O O

logy, of deviation norm

0 50 100 150 200 250
ensemble mean of Ngyp

logio(error) vs number of HVP
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Practical approach: version 2

@ Can reduce memory requirements further by using a multilevel
approximation of each limited-memory local Hessian on level /
using n; eigenpairs.

@ Approximate local Hessians by applying mlevd to local inverse
Hessians based on N..

@ Assemble these to form a reduced-memory assembled Hessian
HIm.

@ Use mlevd again on H]™ based on N,.
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Numerical results

Preconditioner N, I Né
P1 (200,0,00) 1 8 -
P2 (0,8,16,32) 1 8 -
P3 (0,48,16) 1 8 -
P4 (0,8,16,32) 1 8 (0,0,8,0)
P5 (0.8.16.32) 2 8 (0.0.0,8)

logy, of deviation norm

100 150
ensemble mean of Nyyp

logio(error) vs number of HVP
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Conclusions and next steps

@ Similar results with other configurations (e.g. moving sensors,
different initial conditions).

@ Multilevel preconditioning looks promising for constructing a
good limited-memory approximation to H™!.

@ The balance between restrictions on memory/cost limitations
may vary between particular applications.

@ Identifying globally appropriate values for (ng, n1, n2, n3) and
other parameters is tricky.

@ Now ready for two dimensions!
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It is sometimes nice in Scotland. ..
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... you should come to visit!

27th Biennial Numerical Analysis Conference
University of Strathclyde, Glasgow, Scotland
June 27th-30th 2017

http://numericalanalysisconference.org.uk/
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