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Liquid Crystals

@ occur between solid crystal and isotropic liquid states
@ may have different equilibrium configurations

@ switch between stable states by altering applied voltage,
magnetic field, boundary conditions, ...
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@ director: average direction of molecular alignment

unit vector n = (cos 6 cos ¢, cos O sin ¢, sin 0)
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Sample configurations
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Model: Q-tensor Theory

@ symmetric traceless tensor

o oot

local ensemble average over unit vectors u along axes

five degrees of freedom: two specifying the degree of order,
three specifying the angles of the principal directions

(]

basis representation of symmetric traceless tensor

q1 qz as
Q=| ¢ Qa4 gs
93 g5 —q1—da

five unknowns g1, 92, G3, 94, G5
electric field E=-VU
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Finding Equilibrium Configurations

@ minimise the free energy
F= [ Foun(@VQ)dv + [ Fuee(@ 5
v S

Fbulk - Felastic + Fthermotropic + Felectrostatic

1 1
Felastic - §L1(d1V 0)2 + ELQ‘V X Q‘2

1 y V6 1
Fthermotropic = EA(T -T ) tr 02 - ?B tr Q3 + ZC(U‘ 02)2

1 _
Felectrostatic = _5 (GO(GI + EaQ)VU) -E
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Thermotropic Energy

1 X 6 1
Fthermotropic = EA(T -T ) tr 02 - %B tr 03 + ZC(U‘ 02)2

@ uniaxial case: %A(T —-T*) 5%~ %B s34 %C g4

—T-98
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Coupled Equations

@ solve Euler-Lagrange equations plus Maxwell's equation for
the electric potential

v-r = i=1,...,5
V-D = 0
i — OFpuik i OFbuik .. _ Oqi
rj_ e fl = oq; 91 = oy

@ finite element approximation, quadratic elements
@ solution vector u = [q1, 92,93, q4,qs, U] "

@ linearise about ug and iterate
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Linear System At Each Step

(K +2aM + Nlyy)ou = —(K +2aM)ug — Ry,

LA R
LA A
NEONE NG NG N A
MMM Al

9 N9 p95 g5 T s
NGSONGS N ONGS NG N

U U U U U U
N qu Nq3 Nt74 Nt75 Ng J
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Saddle-point problem

A B

A= B, C

@ Aisbnx5n, Byisbnx n, Byis nxbn

@ A can be indefinite, C is positive definite

2000 2000 14000
n2 - 1621910

3D
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GMRES lterations

@ 1D model with right preconditioning

@ convergence tolerance le-8

Neg | Ngor | V=0|V=05|V=15|V=5
16 | 198 129 151 141 141
32 | 390 245 298 270 228
64 | 774 327 430 349 274
128 | 1542 | 372 546 441 395
256 | 3078 | 594 985 800 720
512 | 6150 | 1108 1821 1557 1408

@ many (almost) multiple eigenvalues
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Block Diagonal Preconditioner

[ A B _[A o0
S G R

A=A S5=S5
Ng | Ngog | OV | 0.5V | 1.5V | BV
16 | 198 1 3 7 9
32 | 390 1 3 7 9
64 774 1 3 8 10
128 | 1542 1 3 7 10
256 | 3078 | 1 3 8 10
512 | 6150 | 1 3 7 10

Alison Ramage, University of Strathclyde Iterative solvers for Q-tensor models



Block Diagonal Preconditioner

[ A B _[A o0
S G R

A=A S5=S5
Ng | Ngog | OV | 0.5V | 1.5V | BV
16 | 198 1 3 7 9
32 | 390 1 3 7 9
64 774 1 3 8 10
128 | 1542 1 3 7 10
256 | 3078 | 1 3 8 10
512 | 6150 | 1 3 7 10

@ A=A, S = C: results exactly the same
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Approximation for A

r oA/l 1 1 1 1 7
qu NCIz NQ?, Nq4 Nq5

2 A2 2 2 2
qu NCIz NQ?, Nq4 Nq5

_ 3 3 A3 3 3
A= qu qu NQ3 Nq4 Nq5

4 4 4 V2! 4
qu NCIz NQ?, Nq4 Nq5

5 5 5 5 A/5
L qu NCIz NQ?, Nq4 Nq5 -

N = K +2aM + N,

A = bl_diag(K)
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One dimension
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GMRES,

@ uniform nodal finite element grid
@ from 774 to 9222 degrees of freedom
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One dimension
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GMRES,

@ uniform hierarchical finite element grid
@ from 774 to 9222 degrees of freedom
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Two dimensions
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@ unstructured grids of triangles
@ from 2610 to 19374 degrees of freedom
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Three dimensions
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@ unstructured grids of tetrahedra
@ 6306 and 26274 degrees of freedom
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Q-tensor models of liquid crystals lead to complicated

algebraic equations.

@ Nonlinearities involved make it difficult to identify dominant
terms, with many conflicting issues.

@ Issues of singularity, indefiniteness, lack of symmetry.

@ Block preconditioner using the stiffness matrix performs well
on uniform nodal and hierarchical meshes.

o Convergence independent of the mesh parameter.
o Cheap to implement using factorisation.

@ Further tests required on more complicated problems involving
non-standard geometries, adaptive meshes and defects.
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Twisted Nematic Device

(diagram taken from Stewart (2004))
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Some Issues with Director Modelling

@ problems with numerical modelling can include

¢ dealing with multivalued angles
@ modelling equivalence of n and —n
s modelling defect cores (mathematical singularities)

@ problems with linear algebra can include

@ imposing the unit vector constraint |n| =1
@ double saddle-point system when electric field is introduced

o efficient preconditioned nullspace method has been developed
in previous work
RAMAGE AND GARTLAND JRr, SISC 2013
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Elastic Energy

@ energy induced by distorting the Q-tensor in space
@ energetically favourable for Q to be constant

@ gradients in Q lead to an increase in energy

1 1
Felastic - §L1(d1V Q)2 + ELQ‘V X Q‘2

@ parameters L1 and L, related to the Frank elastic constants

Ki splay
K> twist
K3 bend

Ko + Ky saddle-splay
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Thermotropic Energy

@ potential function which dictates which state the liquid crystal
would prefer to be in: uniaxial, biaxial or isotropic

1 . 6 1
Fthermotropic = EA(T - T ) tr Q2 - gB tr Q3 + ZC(tl“ Q2)2

@ uniaxial case: %A(T —-T*) 5%~ %B s34 %C g4
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Electrostatic energy

@ applied electric field E, electric potential U

E=-VU

@ electric displacement
D = —co(el + Ae"Q)VU

average permittivity €, dielectric anisotropy Ae*

1

F electrostatic — _ED -E
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