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Motivation

Understanding the formation and dynamics of defects is
important in the design and control of liquid crystal devices.

Defects typically induce distortion over very small length
scales as compared to the size of the cell.

This poses significant challenges for standard numerical
modelling techniques.

In this talk we present a finite-element based adaptive moving
mesh model designed to track defect movement.
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Liquid crystal model: Q-tensor theory

Describe the orientation of each molecule in a uniaxial nematic
liquid crystal by a single vector u in direction of its main axis.

Represent average orientation by symmetric traceless order
tensor

Q =

√

3

2

〈

u⊗ u− 1

3
I

〉

.

Use orthogonal eigenframe {l,m,n} to write

Q = S

(

n⊗ n− 1

3
I

)

+ T (m⊗m− l⊗ l)

where S and T are uniaxial and biaxial order parameters.

Consider a uniaxial molecular distribution (T = 0) where the
(unit) eigenvector n is known as the liquid crystal director
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Q-tensor representation

Symmetric traceless tensor Q has five degrees of freedom.

Represent Q using a (non-unique) basis of five
linearly-independent tensors, e.g.

Q =





q1 q2 q3
q2 q4 q5
q3 q5 −q1 − q4



.

Five unknowns for PDE model:

q1, q2, q3, q4, q5.
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Q-tensor equations

Minimise the free energy

F =

∫

V

Fbulk(Q,∇Q) dv +

∫

S

Fsurface(Q) dS

Fbulk = Felastic + Fthermotropic + Felectrostatic

With strong anchoring (Dirichlet boundary conditions), there
is no contribution from the surface energy.

Solutions with least energy are physically relevant: solve
Euler-Lagrange equations.
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Bulk energies

Elastic: induced by distorting the Q-tensor in space

Felastic =
1

2
L1(div Q)2 +

1

2
L2|∇ ×Q|2.

Thermotropic: potential function which dictates which
preferred state (uniaxial, biaxial or isotropic)

Fthermotropic =
1

2
A(T − T ∗) tr Q2 −

√
6

3
B tr Q3 +

1

4
C (tr Q2)2.

Electrostatic: due to an applied electric field E (electric
potential U with E = −∇U).

Felectrostatic = −1

2
ǫ0E · ǫE− (ē div Q) · E
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Derivation of time-dependent PDEs

Use a dissipation function with viscosity coefficient ν:

D =
ν

2
tr

[

(

∂Q

∂t

)2
]

= ν(q̇1q̇4 + q̇21 + q̇22 + q̇23 + q̇24 + q̇25).

Obtain Q-tensor PDEs (for i = 1, . . . , 5 and j = 1, 2, 3):

∂D
∂q̇i

= ∇ · Γ̂i − f̂i ,

(Γ̂i )j =
∂Fbulk
∂qi ,j

, qi ,j =
∂qi
∂xj

, f̂i =
∂Fbulk
∂qi

.

Combining equations and manipulating terms we can write

∂qi
∂t

= ∇ · Γi − fi , i = 1, . . . , 5.

A.Ramage@strath.ac.uk MMPDEs for Liquid Crystal Modelling



Coupling with electric field

Additional unknown U such that E = −∇U.

Assuming no free charges, solve the Maxwell equation
∇ ·D = 0 for electric displacement D.
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Coupling with electric field

Additional unknown U such that E = −∇U.

Assuming no free charges, solve the Maxwell equation
∇ ·D = 0 for electric displacement D.

SUMMARY

Final time-dependent physical PDEs (PPDEs) are

∂qi
∂t

= ∇ · Γi − fi , i = 1, . . . , 5,

∇ ·D = 0.

6 PDEs in 6 unknowns (q1, q2, q3, q4, q5,U)
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Adaptive finite element methods

Three common forms of grid adaptivity in finite elements:

h-refinement: uniform mesh locally coarsened or refined,
normally based on a posteriori error estimates;
p-refinement: order of local polynomial approximation is
increased or decreased in accordance with solution error;
r -refinement: original mesh points are moved to areas where
high resolution is needed.

Advantages of moving meshes:

retaining fixed number of mesh points and connectivity;
interpolation from old to new mesh unnecessary for
time-dependent problems.

Focus here on Moving Mesh PDE model.
Huang and Russell, Adaptive Moving Mesh Methods, Springer (2011)
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Adapt PPDEs for mesh movement

Define physical domain Ω and computational domain Ωc .

Map ξ = (ξ, η) ⊂ Ωc to x = (x , y) ⊂ Ω using bijective
mappings At : Ωc → Ω such that

x(ξ, t) = At(ξ).

Define a mesh velocity

ẋ(x, t) =
∂x

∂t

∣

∣

∣

∣

ξ
(A−1

t (x))

and apply the Chain Rule to get

∂q

∂t

∣

∣

∣

∣

ξ
=

∂q

∂t

∣

∣

∣

∣

x
+ ẋ · ∇q.

Additional convection-like term due to the mesh movement
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Finite elements for the physical PDEs

PPDEs in computational domain(i = 1, . . . , 5):

∂qi
∂t

∣

∣

∣

∣

ξ
− ẋ · ∇q = ∇ · Γi − fi , ∇ ·D = 0.

Find qih(t), Uh such that, for test functions vh,

d

dt

∫

Ω

qihvh dx−
∫

Ω

(∇·(ẋqih)) vh dx =

∫

Ω

Γih·∇vh dx−
∫

Ω

fihvh dx,

∫

Ω

Dh · ∇vh dx = 0.

Non-linear differential algebraic system (i = 1, . . . , 5)

d

dt
(M(t)qi (t)) = Gi (t,qi(t),u(t)), C(qi(t),u(t)) = 0.
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Moving Mesh PDEs

Avoid mesh crossings by evolving the inverse mapping

A−1
t (x) = ξ(x, t).

Choose mapping ξ(x) for a fixed t to minimise

I [ξ] =
1

2

∫

Ωt

[(∇ξ)TG−1(∇ξ) + (∇η)TG−1(∇η)] dx

with 2× 2 symmetric positive definite monitor matrix G .

For robustness, evolve mesh via gradient flow equations
∂ξ

∂t
=

P

τ
∇ · (G−1∇ξ),

∂η

∂t
=

P

τ
∇ · (G−1∇η).

User-specified parameters:

positive temporal smoothing parameter τ ;
positive spatial balancing function P(x, t).
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Final form of MMPDE

Use Winslow monitor matrix with monitor function w(x, t):

G =

[

w 0
0 w

]

.

In practice, interchange variable roles in MMPDE to obtain

τ
∂x

∂t
= P(axξξ + bxξη + cxηη + dxξ + exη).

a =
1

w

x2η + y2η

J2
, b = − 2

w

(xξxη + yξyη)

J2
, c =

1

w

x2ξ + y2ξ

J2
,

d =
1

(wJ)2
[wξ(x

2
η + y2η )− wη(xξxη + yξyη),

e =
1

(wJ)2
[

−wξ(xξxη + yξyη) + wη(x
2
ξ + y2ξ )

]

.
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Additional details for MMPDE

Discretise in space using linear finite elements.

Discretise in time using a backward Euler scheme.

Boundary conditions obtained using a 1D MMPDE.

To avoid solving nonlinear algebraic systems, at t = tn+1

evaluate coefficients a, b, c , d , e at the time t = tn.

Solve resulting linear systems using iterative method
BiCGSTAB with Incomplete LU preconditioner.

Adaptive time-stepping based on computed solutions of
PPDEs and MMPDE.
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Overview of full algorithm

Set an initial uniform mesh ∆0
N . Set the initial guess q0i .

Select an initial ∆t0. Set n = 0.
while (tn < tmax);

Evaluate monitor function at time tn.

Integrate MMPDE forward in time to obtain new grid ∆n+1
N .

Integrate PPDEs forward using SDIRK2 to obtain qn+1
i , un+1.

n := n + 1.
end while.
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Choice of monitor function

Choose input function T (x, t).

Three different forms of monitor function.
AL. Based on a measure of the arc-length of T :

w(T (x, t)) =
(

1 + |∇T (x, t)|2
)

1
2

BM1: Based on first-order partial derivatives of T :

w(T (x, t)) = α(x, t) + |∇T (x, t)|
1
m

BM2: Based on second-order partial derivatives of T :

w(T (x, t)) = α(x, t) +





√

(

∂2T
∂x2

)2

+ 2

(

∂2T
∂x∂y

)2

+

(

∂2T
∂y2

)2





1
m

Scaling parameters α and m regulate mesh clustering.

A.Ramage@strath.ac.uk MMPDEs for Liquid Crystal Modelling



Choosing the input function

Two different forms of input function.

Scalar order parameter. Based on the trace of Q2:

T (x, t) = tr(Q2)

tr(Q2) = S2 for a uniaxial state with scalar order parameter S

Biaxiality. Based on a direct invariant measure of biaxiality

T (x, t) =

[

1− 6 tr(Q3)2

tr(Q2)3

]
1
2

which takes values ranging from 0 (uniaxial) to 1 (fully biaxial).

Both have extrema at the centre of a defect and vary rapidly
in the immediate neighbourhood of the defect centre.
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Numerical experiments

PPDEs non-dimensionalised with respect to lengths and
energies.

Use triangular grid with quadratic basis functions for PPDEs,
linear basis functions for MMPDE.

Monitor/input function combinations:

Method name AL BM1a BM1b BM2b

Monitor function AL BM1 BM1 BM2

Input function tr(Q2) tr(Q2) biaxiality biaxiality

All experiments in Matlab.
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Test problem 1: stationary defect
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Director field of 1/2 defect and eigenvalue exchange along y = 0.
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Typical adapted grid

Sample adapted grid with 1388 quadratic elements.
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Typical solutions

Scalar order parameter S and biaxiality.
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Estimated rate of spatial convergence
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ℓ∞ error compared with reference solution is O(N−3).
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Scalar order parameter along line y = 0
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Biaxiality along line y = 0
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Comparing computational costs

CPU time versus ℓ∞ error for different grid sizes

BM2b established as combination of choice.
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Test problem 2: 2D Pi-cell

Two-dimensional Pi-cell geometry.
Zhang, Chung, Wang and Bos, Liquid Crystals 34(2), 2007

Electric field applied parallel to the cell thickness at time
t = 0.

Inhomogeneous transition mediated by the nucleation of
defect pairs moving and annihilating each other.

Initial director angle across cell centre follows sin(2πx/p) for
cell width p.

Perturbation fixed only at t = 0 for one time step, but
introduces solution gradients in two dimensions.

A.Ramage@strath.ac.uk MMPDEs for Liquid Crystal Modelling



Pi-cell geometry

Pre-tilt angle θ = ±6◦ at boundaries.

Electric field strength 18Vµm−1.

E 1�m

2�m
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S , biaxiality and mesh after 12µs
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Director field after 15.5µs
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Order parameter S after (a) 15.5µs (b) 16µs and (c) 17µs
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Biaxiality after (a) 15.5µs (b) 16µs and (c) 17µs
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Adaptive mesh after (a) 15.5µs (b) 16µs and (c) 17µs
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Summary and future work

New efficient moving mesh method for Q-tensor models of
liquid crystal cells.

Found biaxiality to be a good choice for the monitor input
function.

Demonstrated optimal spatial convergence for a model of a
static +1/2 defect.

Method resolved the movement and core details of defects
(including creation and annihilation) in a time-dependent
Pi-cell problem.
MacDonald, Mackenzie and Ramage, JCP:X 8, 2020

Future challenges involve the extension to more irregular
geometries (e.g. the ZBD) and three dimensions.
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