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Four-dimensional Variational Assimilation (4D-Var)
4D-Var aims to find the solution of a numerical forecast model
that best fits sequences of observations distributed in space over a
finite time interval.

Minimise cost function

J(v0) = (v0 − v
B
0 )

TB−1(v0 − v
B
0 ) +

n∑

i=0

(H(vi )− yi )
TR−1(H(vi )− yi )

with constraint vi = Mi ,0(v0).

analysis v0

background (short-term forecast) v
B
0

observations y

observation operator H

model dynamics vi+1 = M(vi )
background error covariance matrix B

observation error covariance matrix R
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Incremental 4D-Var

Linearise H, M and solve resulting unconstrained
optimisation problem iteratively:

H̄ i
k−1 ≡

∂Hi

∂v

∣∣∣∣
v=vk−1

, M̄
i ,0
k−1 ≡

∂Mi ,0

∂v

∣∣∣∣
v=vk−1

Hessian of the cost function is

H = B−1 + ĤT R̂−1Ĥ

where
Ĥ = [(H̄0)T , (H̄1M̄1,0)T , . . . , (H̄NM̄N,0)T ]T

R̂ = bldiag(Ri), i = 1, . . . ,N.

Cannot store H as a matrix: action of applying H to a vector
is available, but expensive (involves both forward and
backward model solves).
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Motivation for approximating H
−1

H = B−1 + ĤT R̂−1Ĥ

H
−1 approximates Posterior Covariance Matrix (used to find

confidence intervals and carry out a posteriori error analysis).

H
−1/2 can be used in ensemble forecasting.

H
−1, H−1/2 can be used for preconditioning in a

Gauss-Newton method.

Control variable transform: precondition H based on the
background covariance matrix

H = (B1/2)THB1/2 = I + (B1/2)T ĤT R̂−1ĤB1/2

Eigenvalues of H are bounded below by one: more details on
the full eigenspectrum can be found in Haben et al. (2011),
Tabeart et al. (2018).
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Original inverse Hessian

H
−1 (scaled to have unit diagonal, omitted from plot)
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Preconditioned inverse Hessian

H−1 (after control variable transform)
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Limited-memory approximation

H amenable to limited-memory approximation.

Find ne leading eigenvalues and orthonormal eigenvectors
using the Lanczos method (needs only Hv).

Construct approximation

H ≈ I +

ne∑

i=1

(λi − 1)uiu
T
i

Easy to evaluate matrix powers:

Hp
≈ I +

ne∑

i=1

(λp
i − 1)uiu

T
i

IDEA: Build a limited-memory approximation to H−1 (or
H−1/2).
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Multilevel preconditioning

Discretise evolution equation on a grid (level k=0) to
represent top level Hessian H0.

Build a limited-memory multilevel approximation to H−1

based on a sequence of nested grids (level k=1,2,. . . ).

Grid transfer (based on piecewise cubic splines here):

Restriction matrix R f
c from k = f to k = c .

Prolongation matrix Pc
f from k = c to k = f .

Write Hk for [H0]→k (“H0 restricted to grid level k”).

New operators for matrix transfer:

From coarse to fine: [Hc ]→f = Pc
f (Hc − Ic)R

f
c + If

From fine to coarse: [Hf ]→c = R f
c (Hf − If )P

c
f + Ic
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Key idea

Build upwards from the coarsest level.

Assume that Hk+1 is a good approximation to Hk .

If H is preconditioned as H̃ = PTHP , then

H−1 = (PH̃−1/2)(H̃−1/2PT ) ≡ P̂P̂T .

Precondition H on one level with P̂ from the level below.

[H
−1/2
k+1 ]→kHk [H

−1/2
k+1 ]→k

sim
= [H−1

k+1]→kHk ≃ Ik
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Important points

In practice, all we need are eigenvalues and eigenvectors of
each Hk .

Limited-memory approximation means matrix powers are easy
to calculate.

Lanczos method used to compute eigenvalues: this is cheaper
and requires less storage on coarser grids.

Choose to retain Ne = (n0, n1, . . . , nc ) eigenvalues at each
level.

Difficult to find good values for Ne a priori : we have
developed heuristic guidelines from practical experience.
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Illustration

Test using 1D Burgers’ equation.

1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, and 0.7 in [0, 1].

Multilevel preconditioning with four grid levels:

k 0 1 2 3

grid points 401 201 101 51

level 0

level 1

level 2

level 3
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Assessing approximation accuracy

Riemannian distance:

δ(A,B) =
∥∥ln(B−1A)

∥∥
F
=

(
n∑

i=1

ln2λi

)1/2

Compare eigenvalues of H−1 and H̃−1 on the finest grid level
k = 0 using

D =
δ(H−1, H̃−1)

δ(H−1, I )

Vary number of eigenvalues chosen on each grid level

Ne = (n0, n1, n2, n3)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Example: PCG iteration for one Newton step

Hessian linear system (within a Gauss-Newton method):

H(uk)δuk = G (uk)

Solve using Preconditioned Conjugate Gradient iteration
(needs only Hv).

measurement units
memory: length of vector on finest grid L
cost: cost of HVP on finest grid HVP

Preconditioner # CG iterations storage solve cost

none 57 0 L 57 HVP

MG(400,0,0,0) 1 400 L 402 HVP

MG(4,8,16,32) 4 16 L 34 HVP

MG(0,8,16,32) 5 12 L 14 HVP

MG(0,0,16,32) 8 8 L 10 HVP
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Solve cost measured in number of HVPs
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Concluding remarks

Algorithm based solely on repeated use of Lanczos at each
level (for limited-memory approximations).

Difficult to identify the correct number of eigenvalues to use
at each level, but good heuristics available.

Full algorithm is not practical, but we have developed
practical implementations based on Hessian decompositions.

Also works well for other configurations (e.g. moving sensors,
different initial conditions), and other models (e.g. 1D shallow
water equations).

Good potential for extension to higher dimensions and other
applications.
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Motivation for multilevel preconditioning

Diagonal of H−1 on various grid levels:
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Level k

Restrict H0 to level k to obtain Hk .

Use preconditioner from previous level:

Pk = [Pk+1H̃
−1/2
k+1 ]→k = [H

−1/2
k+1 ]→k

Precondition Hk to obtain H̃k :

H̃k = [H
−1/2
k+1 ]→kHk [H

−1/2
k+1 ]→k

sim
= [H−1

k+1]→kHk

Build Pk H̃
−1/2
k to precondition at next level:

PkH̃
−1/2
k = [H

−1/2
k+1 ]→kH

−1/2
k [H

1/2
k+1]→k

sim
= H

−1/2
k
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Fixed memory ratio

Fixed memory ratio R =

kc∑

k=0

nk

2k

R
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Cost including building preconditioner
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Hessian decomposition

partition domain into S subregions and compute local
Hessians Hs such that

H(v) = I +

S∑

s=1

(Hs (v) − I )

computational advantages of local Hessians:

fewer eigenvalues required for limited-memory approximation;
could be computed in parallel;
could use local rather than global models;
could be calculated at a coarser grid level.
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Practical approach

1 Compute limited-memory approximations to local sensor-based
Hessians on level k using nk eigenpairs:

Hs
k ≈ I +

nk∑

i=1

(λi − 1)uiu
T
i

2 Assemble these to form Ha.

3 Apply mlevd to Ha based on a fixed Ne .

Advantage:
Local Hessians cheaper to compute.

Disadvantages:
Additional user-specified parameter(s) k , nk needed.
More memory required as local Hessians must also be stored.

Can use multilevel approximation of local Hessians to reduce
memory costs.
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Cost including building preconditioner
Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines).
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Practical approach: Version 2

1 Approximate each local Hessian Hs
k by applying mlevd to local

inverse Hessians based on Ne,k .

2 Assemble these to form reduced-memory Hessian Hrm
a .

3 Use mlevd again on Hrm
a based on Ne .

Advantage:

Requires less memory than Version 1.

Disadvantage:

Additional user-specified parameter(s) Ne,k needed.
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Version 2: cost including building preconditioner
Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines) with Ne,k = (8, 4, 0, 0) MG approx.
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Idea behind preconditioning

Eigenvalues of [H
−1/2
0→k ]→0 H0 [H

−1/2
0→k ]→0.
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Replace with limited-memory approximations

Use limited-memory form with 10 eigenvalues per level.
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Idea: use all levels

Build recursive preconditioner using information from all levels.
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