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Four-dimensional Variational Assimilation (4D-Var)

4D-Var aims to find the solution of a numerical forecast model
that best fits sequences of observations distributed in space over a
finite time interval.

Minimise cost function

n

J(vo) = (vo —v§) B~ (vo —vg ) + > (H(vi) —yi) T RTH(H(vi) - yi)

i=0
with constraint v; = M"0(vp).
analysis Vo
background (short-term forecast) v
observations y
observation operator H
model dynamics Vipr = M(v;)
background error covariance matrix B
observation error covariance matrix R
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Incremental 4D-Var

@ Linearise H, M and solve resulting unconstrained
optimisation problem iteratively:

8Mi,0
ov

oH'

Hir = 5y

=i,0
’ M~4

V=Vg_ 1 V=Vg_ 1

@ Hessian of the cost function is
H=B1+H R H
where _ L S
[(HO)T, (Hl Ml,O)T’ e (HNMN,O)T]T
= bldiag(Ri), i=1,...,N.

X)) I
|

@ Cannot store H as a matrix: action of applying H to a vector
is available, but expensive (involves both forward and
backward model solves).
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Motivation for approximating H !

H=B1+HTRH

@ H~! approximates Posterior Covariance Matrix (used to find
confidence intervals and carry out a posteriori error analysis).

o H~1/2 can be used in ensemble forecasting.

o H !, H~/2 can be used for preconditioning in a
Gauss-Newton method.

@ Control variable transform: precondition H based on the
background covariance matrix

H = (BI/Z)THBI/Z — + (81/2)TI/_\IT§—1FIBI/2

@ Eigenvalues of H are bounded below by one: more details on
the full eigenspectrum can be found in HABEN ET AL. (2011),
TABEART ET AL. (2018).
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Original inverse Hessian

o H! (scaled to have unit diagonal, omitted from plot)
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Precon ned inverse Hessian

@ H~1 (after control variable transform)
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Limited-memory approximation

@ H amenable to limited-memory approximation.

@ Find n. leading eigenvalues and orthonormal eigenvectors
using the Lanczos method (needs only Hv).

@ Construct approximation

H~I+ Z()\, — 1)u,-u,-T
i=1

@ Easy to evaluate matrix powers:

Ne
HP ~ | + Z()\f’ —1uju/
i=1

@ IDEA: Build a limited-memory approximation to H=! (or
H=1/2).
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Multilevel preconditioning

@ Discretise evolution equation on a grid (level k=0) to
represent top level Hessian Hj.

@ Build a limited-memory multilevel approximation to H™1
based on a sequence of nested grids (level k=1,2,...).

@ Grid transfer (based on piecewise cubic splines here):

@ Restriction matrix Rf from k = f to k = c.
@ Prolongation matrix Pf from k =cto k = f.

@ Write Hy for [Ho]—k (“Ho restricted to grid level k).
@ New operators for matrix transfer:

o From coarse to fine: [Hc]r = PE(He — Ic)RE + Ir
o From fine to coarse:  [Hr]—sc = RE(Hr — If)PE + I,
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@ Build upwards from the coarsest level.

@ Assume that Hj,1 is a good approximation to H.

If H is preconditioned as H = PTHP, then

H™1 = (PH-Y2)(H-12pT) = PPT.

@ Precondition H on one level with P from the level below.

Ho PLaHlHo P I [HihdonHe =~ I

Alison Ramage, University of Strathclyde Approximating the inverse Hessian in 4D-Var data assimilation



Important points

@ In practice, all we need are eigenvalues and eigenvectors of
each H.

@ Limited-memory approximation means matrix powers are easy
to calculate.

@ Lanczos method used to compute eigenvalues: this is cheaper
and requires less storage on coarser grids.

@ Choose to retain  Ne = (ng, n1,...,nc) eigenvalues at each
level.

@ Difficult to find good values for N, a priori: we have
developed heuristic guidelines from practical experience.
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[llustration

@ Test using 1D Burgers' equation.

@ 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, and 0.7 in [0, 1].
@ Multilevel preconditioning with four grid levels:

k o 1 2 3]
grid points | 401 201 101 51 |
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Assessing approximation accuracy

@ Riemannian distance:

n 1/2
5(A,B) = ||In(B~A)| - = (Z ln2/\,->

@ Compare eigenvalues of H~1 and A= on the finest grid level
k = 0 using ~

S(HTL, H™Y)

D=5

@ Vary number of eigenvalues chosen on each grid level

Ne = (ng, n1, n2, n3)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

@ Exact (blue circles), approximated (red stars)
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Example: PCG iteration for one Newton step

@ Hessian linear system (within a Gauss-Newton method):
H(uk)éuk = G(uk)

@ Solve using Preconditioned Conjugate Gradient iteration
(needs only Hv).

@ measurement units
@ memory: length of vector on finest grid L
o cost: cost of HVP on finest grid HVP

Preconditioner | # CG iterations | storage | solve cost
none 57 0L 57 HVP

MG(400,0,0,0) 1 400 L | 402 HVP
MG(4,8,16,32) 4 16 L | 34 HVP
MG(0,8,16,32) 5 12L | 14 HVP
MG(0,0,16,32) 8 8L | 10HVP
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Solve cost measured in number of HVPs

5

. ——(16,0,0,0), 16L | |
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o
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Concluding remarks

@ Algorithm based solely on repeated use of Lanczos at each
level (for limited-memory approximations).

@ Difficult to identify the correct number of eigenvalues to use
at each level, but good heuristics available.

@ Full algorithm is not practical, but we have developed
practical implementations based on Hessian decompositions.

@ Also works well for other configurations (e.g. moving sensors,
different initial conditions), and other models (e.g. 1D shallow
water equations).

@ Good potential for extension to higher dimensions and other
applications.

Alison Ramage, University of Strathclyde Approximating the inverse Hessian in 4D-Var data assimilation



Motivation for multilevel preconditioning

@ Diagonal of H~1 on various grid levels:
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@ Restrict Hp to level k to obtain H,.

@ Use preconditioner from previous level:

Pr = [Pk+1Hk+1 ok = [Hk_j12]—>k

@ Precondition H, to obtain ;Ik:

[ k_i12]—>ka[Hk_i{2]—>k = [Hk_-:l]—>ka

Hi =
. T—1/2 " _
@ Build PcH, to precondition at next level:
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Fixed

y ratio

@ Fixed memory ratio R = —

1 T T T T

average minimum
= true minimum
« maximumn

X__ doubling strategy

distance
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Cost including building preconditioner
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Hessian decomposition

@ partition domain into S subregions and compute local
Hessians H*® such that

S

Hv) =1+ (H(v) - 1)

s=1

@ computational advantages of local Hessians:

fewer eigenvalues required for limited-memory approximation;
could be computed in parallel;

could use local rather than global models;

could be calculated at a coarser grid level.

¢ © ¢ ¢
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Practical approach

© Compute limited-memory approximations to local sensor-based
Hessians on level k using ny eigenpairs:

ng
HE ~ 1+ Z()\,- — Duu]
i=1

Q@ Assemble these to form H,.
© Apply mlevd to H, based on a fixed N.

@ Advantage:
o Local Hessians cheaper to compute.
@ Disadvantages:
o Additional user-specified parameter(s) k, nx needed.
@ More memory required as local Hessians must also be stored.

@ Can use multilevel approximation of local Hessians to reduce
memory costs.
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Cost including building preconditioner

@ Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines).
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Practical approach: Version 2

©Q Approximate each local Hessian H; by applying mlevd to local
inverse Hessians based on N .

© Assemble these to form reduced-memory Hessian H]™.

© Use mlevd again on H]™ based on N,.

@ Advantage:
¢ Requires less memory than Version 1.
@ Disadvantage:
@ Additional user-specified parameter(s) Ne x needed.
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Version 2: cost including building preconditioner

@ Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines) with N, x = (8,4,0,0) MG approx.
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Idea behind preconditioning

@ Eigenvalues of [Ho__lf]—m Ho [Ho__{f]—m-

w
T

N
T

grid level

107 10° 10! 102 10° 10* 10°
eigenvalues
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Replace with limited-memory approximations

@ Use limited-memory form with 10 eigenvalues per level.

SN {1 (AR o
2| IO RO
o
3
=1
T
>
o INTWETAND e
107 10° 10! 102 10% 10* 10°
eigenvalues
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Idea: use all levels

@ Build recursive preconditioner using information from all levels.

|
o | I ]
20 q

no. of eigs per level

o |
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