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@ Liquid crystals occur between solid crystal and isotropic liquid

states.
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Liquid crystals

liquid crystal liquid

@ Liquid crystals occur between solid crystal and isotropic liquid
states.

@ They may have different equilibrium configurations, but
naturally prefer states with minimum energy.
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Liquid Crystal Displays

o IDEA: force switching between stable states by altering
applied voltage, magnetic field, boundary conditions, ...
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Liquid Crystal Displays

o IDEA: force switching between stable states by altering
applied voltage, magnetic field, boundary conditions, ...

@ Used in a wide range of LCDs.
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@ Defects in a liquid crystal can arise due to external factors
such as applied electric or magnetic fields, or the constraining
geometry of the liquid crystal cell.
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@ Defects in a liquid crystal can arise due to external factors
such as applied electric or magnetic fields, or the constraining
geometry of the liquid crystal cell.

@ Understanding the formation and dynamics of defects is
important in the design and control of liquid crystal devices.
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@ Defects in a liquid crystal can arise due to external factors
such as applied electric or magnetic fields, or the constraining
geometry of the liquid crystal cell.

@ Understanding the formation and dynamics of defects is
important in the design and control of liquid crystal devices.

@ Defects typically induce distortion over very small length scales
as compared to the size of the cell: this poses significant
challenges for standard numerical modelling techniques.
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@ Defects in a liquid crystal can arise due to external factors
such as applied electric or magnetic fields, or the constraining
geometry of the liquid crystal cell.

@ Understanding the formation and dynamics of defects is
important in the design and control of liquid crystal devices.

@ Defects typically induce distortion over very small length scales
as compared to the size of the cell: this poses significant
challenges for standard numerical modelling techniques.

@ In this talk we present a finite-element based adaptive moving
mesh model for tracking defect movement.
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Director-based model

@ Director: represents average direction of molecular alignment
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Director-based model

@ Director: represents average direction of molecular alignment
@ Represent using unit vectors with n = —n:

n = (cos 6 cos ¢, cos 0 sin ¢, sin 0)
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Director-based model

@ Director: represents average direction of molecular alignment
@ Represent using unit vectors with n = —n:

n = (cos 6 cos ¢, cos 0 sin ¢, sin 0)

@ Model with Leslie-Ericksen dynamic theory.
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Liquid crystal model: Q-tensor theory

@ Describe orientation of each molecule by a single vector u in
direction of its main axis.
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Liquid crystal model: Q-tensor theory

@ Describe orientation of each molecule by a single vector u in
direction of its main axis.

@ Represent average orientation by symmetric and traceless

order tensor
1
Q= \/§<u®u—§l>.

A.Ramage@strath.ac.uk MMPDEs for Liquid Crystal Modelling



Liquid crystal model: Q-tensor theory

@ Describe orientation of each molecule by a single vector u in
direction of its main axis.

@ Represent average orientation by symmetric and traceless

order tensor
Q= \/>< Ru — —I>

@ With orthogonal eigenframe {I, m,n}, write
1
Q:S<n®n—§l> + Tmeam—-Ix]l)

where S, T are uniaxial and biaxial order parameters.
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Liquid crystal model: Q-tensor theory

@ Describe orientation of each molecule by a single vector u in
direction of its main axis.

@ Represent average orientation by symmetric and traceless

order tensor
Q= \/>< Ru — —I>

@ With orthogonal eigenframe {I, m,n}, write
1
Q:S<n®n—§l> + Tmeam—-Ix]l)

where S, T are uniaxial and biaxial order parameters.

@ Consider uniaxial molecular distribution (7 = 0) where n is
the liquid crystal director.
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Q-tensor representation

@ Symmetric traceless tensor Q has five degrees of freedom.
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Q-tensor representation

@ Symmetric traceless tensor Q has five degrees of freedom.

@ Represent Q using a (non-unique) basis of five
linearly-independent tensors, e.g.

a1 a2 as
Q=| o e a5
a3 as —q1 — Qg4
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Q-tensor representation

@ Symmetric traceless tensor Q has five degrees of freedom.

@ Represent Q using a (non-unique) basis of five
linearly-independent tensors, e.g.

a1 a2 as
Q=| o e a5
a3 as —q1 — Qg4

@ Five unknowns for PDE model:

di, 92, g3, 44, gs.
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Q-tensor equations

@ Minimise the free energy:
F= [ Fon(@VQ)dv + [ Fuiee(@ 35
1% S

F, bulk — F. elastic T F, thermotropic + F, electrostatic
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Q-tensor equations

@ Minimise the free energy:
F= [ Fon(@VQ)dv + [ Fuiee(@ 35
%4 S
F, bulk — F. elastic T F, thermotropic + F, electrostatic

@ Derive expressions for individual energy contributions in terms

of Q, VQ.
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Q-tensor equations

@ Minimise the free energy:
F= [ Fon(@VQ)dv + [ Fuiee(@ 35
1% S

F, bulk — F. elastic T F, thermotropic + F, electrostatic

@ Derive expressions for individual energy contributions in terms

of Q, VQ.

@ With strong anchoring (Dirichlet boundary conditions), there
is no contribution from surface energy.
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Q-tensor equations

@ Minimise the free energy:
F= [ Fon(@VQ)dv + [ Fuiee(@ 35
%4 S
F, bulk — F. elastic T F, thermotropic + F, electrostatic

@ Derive expressions for individual energy contributions in terms

of Q, VQ.

@ With strong anchoring (Dirichlet boundary conditions), there
is no contribution from surface energy.

@ Solutions with least energy are physically relevant: solve
Euler-Lagrange equations.
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Bulk energies

o Elastic energy: induced by distorting the Q-tensor in space.

1 . 1
Felastic = ELl(le Q)2 + §L2|V X Q|2
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Bulk energies

o Elastic energy: induced by distorting the Q-tensor in space.

1 . 1
Felastic = ELl(le Q)2 + §L2|V X Q|2

@ Thermotropic energy: potential function which dictates which
preferred state (uniaxial, biaxial or isotropic).

1 V6 1
Fthermotropic = EA(T - T*) tr Q2 - ?B tr Q3 + ZC(tl“ Q2)2
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Bulk energies

o Elastic energy: induced by distorting the Q-tensor in space.

1 . 1
Felastic = ELl(le Q)2 + §L2|V X Q|2

@ Thermotropic energy: potential function which dictates which
preferred state (uniaxial, biaxial or isotropic).

1 V6 1
Fthermotropic = EA(T - T*) tr Q2 - ?B tr Q3 + ZC(tl“ Q2)2

@ Electrostatic energy: due to an applied electric field E
(electric potential U with E = =V U).

1 _
Felectrostatic = —§€0E - €E — (e div Q) -E
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Derivation of time-dependent PDEs

@ Use a dissipation function with viscosity coefficient v.

v
D=
2

0Q\? P
tr [(E) ] =v(qga+ 43+ G + G5 + a3 + 42)
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Derivation of time-dependent PDEs

@ Use a dissipation function with viscosity coefficient v.
v 0Q\? . . . . . .
D=tr [(E) ] =v(qga+ 43+ G + G5 + a3 + 42)

@ Obtain Q-tensor PDEs (for i =1,...,5 and j = 1,2,3):
oD N

— =V —f
8ql 1 1
(F1); = OF puik - 0qi > OFbuik
i)j 8qi,j ’ ij 8XJ7 i 0q;
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Derivation of time-dependent PDEs

@ Use a dissipation function with viscosity coefficient v.
v 0Q\? . . . . . .
D=tr [(E) ] =v(qga+ 43+ G + G5 + a3 + 42)

@ Obtain Q-tensor PDEs (for i =1,...,5 and j = 1,2,3):
oD N

=V.-Fi—#
olef Vo
~ OFpbuik 0q; 2 OF puik
( I)J 8QI,j s aij 8)(17 i da;

@ Combining equations and manipulating terms gives

dq;
ot
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Coupling with electric field

@ Additional unknown U such that E = -V U.
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Coupling with electric field

@ Additional unknown U such that E = -V U.

@ Assuming no free charges, solve the Maxwell equation

V-D=0, electric displacement D.
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Coupling with electric field

@ Additional unknown U such that E = -V U.

@ Assuming no free charges, solve the Maxwell equation

V-D=0, electric displacement D.

| SUMMARY |
@ Final time-dependent physical PDEs (PPDEs) are

8q,- .
= V-Ti—fi i=1,...,5
9t \Y% i
V-D = 0

@ 6 PDEs in 6 unknowns (g1, g2, 93, qa, gs, U)
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Adaptive finite element methods

@ Three common forms of grid adaptivity in finite elements:

o h-refinement: initially uniform mesh is locally coarsened or
refined by inclusion or deletion of mesh points, normally based
on a posteriori error estimates

@ p-refinement: order of local polynomial approximation is
increased or decreased in accordance with solution error

o r-refinement: original mesh points are moved to areas where
high resolution is needed
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Adaptive finite element methods

@ Three common forms of grid adaptivity in finite elements:

o h-refinement: initially uniform mesh is locally coarsened or
refined by inclusion or deletion of mesh points, normally based
on a posteriori error estimates

@ p-refinement: order of local polynomial approximation is
increased or decreased in accordance with solution error

o r-refinement: original mesh points are moved to areas where
high resolution is needed

@ Advantages of moving meshes:

¢ retaining fixed number of mesh points and connectivity;
e interpolation from old to new mesh unnecessary for
time-dependent problems.
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Adaptive finite element methods

@ Three common forms of grid adaptivity in finite elements:

o h-refinement: initially uniform mesh is locally coarsened or
refined by inclusion or deletion of mesh points, normally based
on a posteriori error estimates

@ p-refinement: order of local polynomial approximation is
increased or decreased in accordance with solution error

o r-refinement: original mesh points are moved to areas where
high resolution is needed

@ Advantages of moving meshes:

¢ retaining fixed number of mesh points and connectivity;
e interpolation from old to new mesh unnecessary for
time-dependent problems.

@ Focus here on Moving Mesh PDE model.
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Adapt PPDEs for mesh movement

@ Physical domain 2, computational domain Q..
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Adapt PPDEs for mesh movement

@ Physical domain 2, computational domain Q..

@ Bijective mappings A; : Qc — Q map € = (§,1) C Q. to
x=(x,y) CQ:

x(§, t) = A:(£) -
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Adapt PPDEs for mesh movement

@ Physical domain 2, computational domain Q..

@ Bijective mappings A; : Qc — Q map € = (§,1) C Q. to
x=(x,y) CQ:
x(£7 t) = At(g) .

@ Define mesh velocity

_ Ox

K1) = | (A200)
and apply the Chain Rule to get
ot I3 ot x
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Adapt PPDEs for mesh movement

@ Physical domain 2, computational domain Q..
@ Bijective mappings A; : Qc — Q map € = (§,1) C Q. to
x=(x,y) CQ:
x(£7 t) = At(g) .

@ Define mesh velocity

: Ox _
K(x. 1) = | (A7)
3
and apply the Chain Rule to get
ot I3 ot x

@ Additional convection-like term due to the mesh movement.
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Finite elements for the physical PDEs

@ Final set of six coupled PDEs (i =1,...,5):

dq;
ot 5

—x-Vg=V-T;—f, V.-D=0
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Finite elements for the physical PDEs

@ Final set of six coupled PDEs (i =1,...,5):

0q;
ot

—x-Vg=V-T;—f, V.-D=0

£

@ Find gjn(t), Uy such that for test functions vy,

d

—_ dinhVh dx—/(V(kq;h)) Vh dx = / r,'h'VVh dx—/ f,-hvh dX,
dt Jo Q Q Q

/Dh~VVth:0.
Q
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Finite elements for the physical PDEs

@ Final set of six coupled PDEs (i =1,...,5):

0q;
ot

—x-Vg=V-T;—f, V.-D=0

£

@ Find gjn(t), Uy such that for test functions vy,

d
—_ dinhVh dx—/(V(kq;h)) Vh dx = / r,'h'VVh dx—/ f,-hvh dX,
dt Jo Q Q Q
/Dh~VVth:0.
Q
@ Non-linear differential algebraic system (i = 1,...,5)
d
S (M(t)a;(t)) = Gi(t,q;(t),u(t)),  Ca;(t),u(t)) =0.
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Moving Mesh PDEs

@ Avoid mesh crossings by evolving inverse mapping

ArH(x) = &(x, 1).
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Moving Mesh PDEs

@ Avoid mesh crossings by evolving inverse mapping

ArH(x) = &(x, 1).

@ Choose mapping &£(x) for a fixed t to minimise

€)= 5 [ (9876 7HVE) + (V)67 (V)] dx

with 2 x 2 symmetric positive definite monitor matrix G.
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Moving Mesh PDEs

@ Avoid mesh crossings by evolving inverse mapping

ArH(x) = &(x, 1).

@ Choose mapping &£(x) for a fixed t to minimise
1 _ _

€)= 5 [ (9876 7HVE) + (V)67 (V)] dx

with 2 x 2 symmetric positive definite monitor matrix G.

@ For robustness, evolve mesh via gradient flow equations

% _ Py (g1 M _Py (g1
5= -V (G, Si=—V(6V).
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Moving Mesh PDEs

@ Avoid mesh crossings by evolving inverse mapping

ArH(x) = &(x, 1).

@ Choose mapping &£(x) for a fixed t to minimise

€)= 5 [ (9876 7HVE) + (V)67 (V)] dx

with 2 x 2 symmetric positive definite monitor matrix G.

@ For robustness, evolve mesh via gradient flow equations
o P on P
= =-V-(G'V¢, —==V-(G"'Vp.
ot 7 ( &) ot 71 ( ")
@ User-specified parameters:
@ positive temporal smoothing parameter 7,
@ positive function spatial balancing parameter P(x, t).
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Final form of MMPDE

@ Use monitor function w(x, t) with Winslow monitor matrix

[ 2]
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Final form of MMPDE

@ Use monitor function w(x, t) with Winslow monitor matrix

w 0
G = [ 0 w ] ’
@ In practice, interchange variable roles in MMPDE to obtain
Oox
T = P(ax¢e + bxey + cxyppy + dxe + €x;))

oLty 20 tyen) 1% tX
w  J?2 w J? ’ w  J2
1 2 2
d = (WJ)2 [Wf(xn +.yn) - W77(X§X77 +y§y77)7

1
e = W [—Wg(Xan + yeyn) + Wn(Xg + yg)} .
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Additional details for MMPDE

@ Boundary conditions obtained using a 1D MMPDE.
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Additional details for MMPDE

@ Boundary conditions obtained using a 1D MMPDE.
@ Discretise in space using linear finite elements.

@ Discretise in time using a backward Euler scheme.
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Additional details for MMPDE

@ Boundary conditions obtained using a 1D MMPDE.
@ Discretise in space using linear finite elements.
@ Discretise in time using a backward Euler scheme.

@ To avoid solving nonlinear algebraic systems, at t = +"*1
evaluate coefficients a, b, ¢, d, e at the time t = t".
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Additional details for MMPDE

@ Boundary conditions obtained using a 1D MMPDE.
@ Discretise in space using linear finite elements.
@ Discretise in time using a backward Euler scheme.

@ To avoid solving nonlinear algebraic systems, at t = +"*1
evaluate coefficients a, b, ¢, d, e at the time t = t".

@ Solve resulting linear systems using iterative method
BiCGSTAB with Incomplete LU preconditioner.
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Additional details for MMPDE

@ Boundary conditions obtained using a 1D MMPDE.
@ Discretise in space using linear finite elements.
@ Discretise in time using a backward Euler scheme.

@ To avoid solving nonlinear algebraic systems, at t = +"*1
evaluate coefficients a, b, ¢, d, e at the time t = t".

@ Solve resulting linear systems using iterative method
BiCGSTAB with Incomplete LU preconditioner.

@ Adaptive time-stepping based on computed solutions of
PPDEs and MMPDE.
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Overview of full algorithm

Set an initial uniform mesh A?V. Set the initial guess q?.

Select an initial At?. Set n = 0.

while (t" < t™m®);
Evaluate monitor function at time t".
Integrate MMPDE forward in time to obtain new grid A’,(,H.
Integrate PPDEs forward using SDIRK2 to obtain q,’-’H, Tiany
n:=n+1.

end while.
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Choosing the monitor function

@ Consider three different forms of monitor function:

o AL. Based on a measure of the arc-length of T

1

w(T(x, t)) = (1 VT (x, t)|2) ’
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Choosing the monitor function

@ Consider three different forms of monitor function:

o AL. Based on a measure of the arc-length of T

1

w(T(x, t)) = (1 VT (x, t)|2) ’

@ BM1. Based on first-order partial derivatives of 7

3=

w(T(x,t)) = a(x, t) + |VT(x,t)]
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Choosing the monitor function

@ Consider three different forms of monitor function:

o AL. Based on a measure of the arc-length of T

1

w(T(x, t)) = (1 VT (x, t)|2) ’

@ BM1. Based on first-order partial derivatives of 7

3=

w(T(x,t)) = a(x, t) + |VT(x,t)]

@ BM2. Based on second-order partial derivatives of 7

w(T(x,t)) = a(x,t) + \/(g)2+2<%)2+<22;_>2);
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Choosing the monitor function

@ Consider three different forms of monitor function:

o AL. Based on a measure of the arc-length of T

1

MT@J»:(LHVTQJW)E

@ BM1. Based on first-order partial derivatives of 7

3=

w(T(x,t)) = a(x, t) + [VT(x, t)]
@ BM2. Based on second-order partial derivatives of 7
R2TN\? 2T\ (2T\?)
W(T(X, t)) = ()z(X, t) + \/(W) + 2 <W@y) + <a—y2>

@ Scaling parameters a and m regulate mesh clustering.
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Choosing the input function

@ Consider two different forms of input function:
o Scalar order parameter. Based on the trace of Q2

T(x, t) = tr(Q?)

as tr(Q?) = S? for uniaxial state with order parameter S.
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Choosing the input function

@ Consider two different forms of input function:
o Scalar order parameter. Based on the trace of Q2

T(x.t) = tr(Q)
as tr(Q?) = S? for uniaxial state with order parameter S.

o Biaxiality. Based on a direct invariant measure of biaxiality

B 6 tr(Q%)? :
T(x,t) = ll - m]

taking values ranging from 0 (uniaxial) to 1 (fully biaxial).
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Choosing the input function

@ Consider two different forms of input function:
o Scalar order parameter. Based on the trace of Q2

T(x.t) = tr(Q)
as tr(Q?) = S? for uniaxial state with order parameter S.

o Biaxiality. Based on a direct invariant measure of biaxiality

B 6 tr(Q%)? :
T(x,t) = ll - m]

taking values ranging from 0 (uniaxial) to 1 (fully biaxial).

@ Both have extrema at the centre of a defect and vary rapidly
in the immediate neighbourhood of the defect centre.
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Numerical experiments

@ PPDEs non-dimensionalised with respect to lengths and
energies.
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Numerical experiments

@ PPDEs non-dimensionalised with respect to lengths and
energies.

@ Use quadratic triangular finite elements for PPDEs, linear
finite elements for MMPDE.
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Numerical experiments

@ PPDEs non-dimensionalised with respect to lengths and
energies.

@ Use quadratic triangular finite elements for PPDEs, linear
finite elements for MMPDE.

@ Monitor/input function combinations:

Method name AL | BMla | BMib BM2b
Monitor function AL BM1 BM1 BM2
Input function || tr(Q?) | tr(Q?) | biaxiality | biaxiality
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Numerical experiments

@ PPDEs non-dimensionalised with respect to lengths and
energies.

@ Use quadratic triangular finite elements for PPDEs, linear
finite elements for MMPDE.

@ Monitor/input function combinations:

Method name AL | BMla | BMib BM2b
Monitor function AL BM1 BM1 BM2
Input function || tr(Q?) | tr(Q?) | biaxiality | biaxiality

@ All experiments carried out in MATLAB.
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Test problem 1: stationary defect

@ Director field of 1/2 defect and eigenvalue exchange along the

line y =0.
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Typical adapted grid

@ Sample adapted grid with 1388 quadratic elements.

10

-10
-10 0 10
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Typical solutions

@ Scalar order parameter S (left) and biaxiality (right).

S
10 . 10
10.6
0.5
y o . 0s Y0
0.3
-10 02 10
10 0 10 410
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Estimated rate of spatial convergence

@ /o error compared with reference solution is O(N~3).

lle™ .

7 72 74 76 78 8 82 84
loga(N)
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Scalar order parameter along line y =0

e (a) AL; (b) BM1a; (c) BM1b; (d) BM2b

(a) (b)
0.8 0.8
0.6 ‘ 0.6
0.4 S0.4
0.2 ‘ 0.2
Yo 0 10 Yo 0 10
X X
(c) (d)
0.8 0.8
0.6 ‘ 0.6
S0.4 S0.4
0.2 0.2
Yo 0 10 Yo 0 10
X X
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Biaxiality along line y =0

e (a) AL; (b) BM1a; (c) BM1b; (d) BM2b
1 e
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Comparing computational costs

@ CPU time versus £, error for different grid sizes.

CPU time(s)

A.Ramage@strath.ac.uk

-BM2b-q ,
==BM1b-q ,[]
-BM1a-q ||
-AL-q, |
---UNI—q4

CPU time(s)
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Comparing computational costs

@ CPU time versus £, error for different grid sizes.

-BM2b-q ,
==BM1b-q ,[]
-BM1a-q ||
-AL-q, |
---UNI—q4

102 102
CPU time(s) CPU time(s)

@ BM2b established as combination of choice.
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Test problem 2: 2D Pi-cell

@ Two-dimensional Pi-cell geometry.
Zhang, Chung, Wang and Bos, Liquid Crystals 34(2), 2007
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Test problem 2: 2D Pi-cell

@ Two-dimensional Pi-cell geometry.
Zhang, Chung, Wang and Bos, Liquid Crystals 34(2), 2007
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@ Electric field applied parallel to the cell thickness at time
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@ Inhomogeneous transition mediated by the nucleation of
defect pairs moving and annihilating each other.
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cell width p.
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Test problem 2: 2D Pi-cell

@ Two-dimensional Pi-cell geometry.
Zhang, Chung, Wang and Bos, Liquid Crystals 34(2), 2007

@ Electric field applied parallel to the cell thickness at time
t=0.

@ Inhomogeneous transition mediated by the nucleation of
defect pairs moving and annihilating each other.

@ Initial director angle across cell centre follows sin(27x/p) for
cell width p.

@ Perturbation fixed only at t = 0 for one time step, but
introduces solution gradients in two dimensions.
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Pi-cell geometry

® Pre-tilt angle # = £6° at boundaries.
o Electric field strength 18V pm™!.

- - — —— —
- - - - .
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- - - — _
- - — — —
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Order parameter S after (a) 15.5us (b) 16us and (c) 17us
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Biaxiality after (a) 15.5us (b) 16us and (c) 17us
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Adaptive mesh after (a) 15.5us (b) 16us and (c) 17us
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Summary and future work

@ We have developed a new efficient moving mesh method for
Q-tensor models of liquid crystal cells.

@ We have shown that biaxiality is a good choice for the
monitor input function.

@ We demonstrated optimal spatial convergence for a model of
a static +1/2 defect.

@ We resolved the movement and core details of defects in a
time-dependent Pi-cell problem.

@ Modelling the creation and annihilation of moving singularities
on very small length and time scales is a real challenge for
numerical methods.

@ Future challenges involve the extension to three dimensions
and more irregular geometries (e.g. the ZBD).
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