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Liquid crystals

oy

liquid crystal liquid

solid

@ occur between solid crystal and isotropic liquid states
@ may have different equilibrium configurations

@ naturally prefer states with minimum energy

Alison Ramage, University of Strathclyde Saddle-point Problems in Liquid Crystal Modelling



Liquid Crystal Displays

@ IDEA: force switching between stable states by altering
applied voltage, magnetic field, boundary conditions, ...

@ used in a wide range of LCDs
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Twisted Nematic Device

Q

\

(b) ‘on state’ H> H,

(a) ‘off state’ H < H,

(diagram taken from STEWART (2004))
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Director-based model

@ director: average direction of molecular alignment

unit vector n = (cos 6 cos ¢, cos O sin ¢, sin 6)

@ Leslie-Ericksen dynamic theory for nematics
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Finding equilibrium configurations

@ minimise the free energy density
F= /V Foun(0,, V0, V46) + /8 Fuurtrcel0, 0) dS
Fbulk - Felastic + Felectrostatic

o if fixed boundary conditions are applied, surface energy term
can be ignored

@ solutions with least energy are physically relevant

@ use calculus of variations: Euler-Lagrange equations

Alison Ramage, University of Strathclyde Saddle-point Problems in Liquid Crystal Modelling



Elastic energy

@ Frank-Oseen elastic energy with one-constant approximation

1
Felastic = EKHV"‘F

@ electrostatic energy

1

1
2 2
Felectrostatic = _EGOGLE - 56063(71 . E)

o applied electric field E of magnitude £
o dielectric anisotropy €a =€ — €L
¢ permittivity of free space €0
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Twisted Nematic Device

@ nematic liquid crystal sample o -
between two parallel plates a iy by I
distance d apart 09 09—y

0.8 0.8 —

@ strong anchoring parallel to plate . o

surfaces ' '
0.6 - 0.6

@ rotate one plate through 7 /2 05 05
radians 0ad ool

@ electric field E = (0,0, E(z2)), 03 03
applied voltage V 02 02

. : : du 7 T

@ electric potential U with E = & o o 4

Alison Ramage, University of Strathclyde Saddle-point Problems in Liquid Crystal Modelling



Problem 1: TND director model

du
@ director n = (u, v, w), electric potential U with E = =
7
@ equilibrium equations on z € [0, d]
1 d
F= 5/ {K||Vn||® — ege 1 E* — cgea(n - E)?} dz
0
@ discretise with linear finite elements on a grid of N + 1 points
7k a distance Az apart
@ constraints |n| =1 applied pointwise using Lagrange
multipliers A
@ n = N — 1 unknowns for each variable u, v, w, U, \
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Constrained minimisation

Az
G = 7[f(ul,...,u,,,vl,...,vn,wl,...,w,,,U1,...,U,,)
— MV Hwf —1) = (0 + VR4 - 1)

@ solve VG(x) =0 for x = [u,v,w, \, U]
N + 1 grid points = n = N — 1 unknowns

@ use Newton's method: linear system
V2G(x/) - 6x; = —VG(x/)
@ 5n x 5n coefficient matrix is Hessian V2G(x)
VinG VG Vg,G

VG = | V3,G V3,G Vj,G
V3.G ViuG Vi,G
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Full Hessian structure

vr21nG vr2|)\G vﬁUG
2
VinG ViuG VG

A B D
H=1| BT 0 0
DT 0 —-C

@ H is a symmetric and indefinite double saddle-point matrix
A is positive definite iff V < V,

B has full rank with BT B = AZ?,

C is tridiagonal and positive definite

D has complex eigenvalues in conjugate pairs

(<]

¢ ¢ €
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Nullspace Method |

Adn+ BoA+ Dép = —V,G (1)
BTon = -V,G (2)
D"on—Cop = —VyG (3)

@ use Z € R37%2" whose columns form a basis for the nullspace
of BT, ie. BTZ=2"TB=0

@ write solution of (2) as  dn = dn + Zx where particular
solution satisfies B on = —V, G

@ system size reduced from 5n x 5n to 3n x 3n
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Nullspace Method I

@ reduced system HX = b:

—ZT(VaG + Adn)

[ZTAZ ZTD][ X ]_
~VyG —D7on

DTz —C sU

@ recover full solution from

sn = —B(BTB)V,G
sn = Zx+on
A = (B"B)'BT(~V,G — Aén — DSU)

@ here BT B is diagonal so solve is cheap
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Nullspace of BT

n
np
B=-Az ) , o np= 1y

Ny

@ use eigenvectors of orthogonal projection | —n; ® n;, e.g.

Y Y

uj uj
=1 1 |, m=| g (uj # 0)

0 1

|1 m;

|2 my
/ =
I, m,
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Preconditioned Minres

@ Solve reduced system using Minres iterative method.

@ Instead of solving HX = B solve
73_1/27-[77_1/2(731/2)?) — p-1/2f

for some preconditioner P

@ Choose P so that

(i) eigenvalues of P~1/21{P~1/2 are well clustered

(i) Pu =r is easily solved
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Ideal Block Preconditioner

[ZTAZ 0]

@ block preconditioner: P = 0 c

@ preconditioned matrix:

H=P PHP1/2 = { o ]

M —I
M=CY2ZTD(ZzTAZ)"1/?
@ 3n eigenvalues of # are

(i) 1  with multiplicity n+1
(i) -1  with multiplicity 1

(i) +y/1+07 for k=1,...,n—1

ok = singular value of M
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Estimate of Minres convergence

@ to achieve |[ri||> < €[|ro||> need

1 2
k ~ 5\/1+0%axln <E>

@ Omayx IS essentially independent of N
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Minres lteration Counts

off state on state
N first step last step | first step last step
64 4 1 5 7
256 4 1 5 7
1,024 4 1 5 7
4,096 4 1 5 7
16,384 4 1 5 7
65,536 4 1 5 7
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Practical preconditioners

@ Block systems can also be solved iteratively.

@ Example: use a fixed number of PCG iterations with AMG
preconditioner (HSL_MI20).

1 PCG/AMG iteration 3 PCG/AMG iterations
off state on state off state on state
N first last | first last || first last | first last

32 6 5 7 9 4 1 5 7

128 7 6 7 9 4 1 5 7
512 7 6 8 9 4 1 5 7
2,048 7 6 8 9 4 2 5 7
8,192 7 6 8 9 4 2 5 7
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Summary of Problem 1

Director modelling of TND device in 1D cell

@ Obtain a double saddle-point system due to imposing the unit
vector constraint |n| = 1 and coupling with the electric
(magnetic) field.

o Efficient preconditioned nullspace solver developed with
potential for full 2D and 3D simulations.

@ Issues remain re how to precondition Z7AZ for these more
general cases.

Other difficulties with director modelling:
@ dealing with multivalued angles
@ modelling equivalence of n and —n

@ modelling defect cores (mathematical singularities)
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Q-tensor theory

@ symmetric traceless tensor

Q \/§ ® 1I
=1/ (u®u-—=
2 3
@ local ensemble average over unit vectors u along molecular
axes

@ basis representation

q1 g2 g3
Q=| ¢ Qa4 gs
93 g5 —q1—da

@ applied electric field E, electric potential U

@ unknowns g1, 92, G3, 94, g5, U
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Finding equilibrium configurations

@ minimise the free energy
F= [ Foun(@VQ)dv + [ Fuioce(@) 5
v s

F, bulk — F. elastic T F, thermotropic + F, electrostatic

o if fixed boundary conditions are applied, surface energy term
can be ignored

@ solutions with least energy are physically relevant: solve
Euler-Lagrange equations
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Elastic and thermotropic energies

@ elastic energy: induced by distorting the Q-tensor in space

1 . 1
Felastic = ELl(le Q)2 + §L2|V X Q|2

@ thermotropic energy: potential function which dictates which
state the liquid crystal would prefer to be in (uniaxial, biaxial
or isotropic)

1 . 6 1
Fthermotropic = EA(T -T ) tr Q2 - gB tr Q3 + ZC(tr Q2)2
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Thermotropic energy

1 X 6 1
Fthermotropic = EA(T -T ) tr 02 - %B tr 03 + ZC(U‘ 02)2

@ uniaxial case: %A(T —-T*) 5%~ %B s34 %C g4

—T-98

Alison Ramage, University of Strathclyde Saddle-point Problems in Liquid Crystal Modelling



Electrostatic energy

@ electrostatic energy: due to an applied electric field E

1
Felectrostatic = _EGOE -€E— Py - E

o flexoelectric term (average permittivity €):
Py =¢ediv @
@ electric potential U with E=—-VU

@ electric displacement

D = eg(el + Ae*Q)VU + & div@Q
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Minimising the free energy

@ solve Euler-Lagrange equations

v.-r = f, i=1,...,5
V:-D = 0
i OFpuk i OFpui .. — Oagi
rj_ a9q;j ' fl = aq i = Ox;

@ solution vector u = [q1, 92,93, q4,qs, U] "
@ finite element approximation, quadratic elements

@ linearise about ug and iterate
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Linear system at each step

(K +2aM + Nlyy)ou = —(K +2aM)ug — Ry,

egeK 0

g1 a2 a3 a4 as

N2ONZ N2 ONE N2 ER

a1 a2 a3 a4 a5
| M % M
Ny Ng,  Ngo o Ngo Ngoo Ej
Ny, N, Neg  No, o Nao E)
L DQ] DQQ DQ3 DQ4 Dq_r, Dy |
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Saddle-point problem

[ A B
A=1B, ¢

@ Aisbnx5n, Byisbnx n, Byis nxbn
@ nonsymmetric: A can be indefinite, C is positive definite

300 so0 a0
nz - 20802 n2 - 1621910

2D 3D

Saddle-point Problems in Liquid Crystal Modelling
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1D problem

@ GMRES iterations with diagonal preconditioning

@ convergence tolerance le-8

Neg | Ngor | V=0|V=05|V=15|V=5
16 | 198 129 151 141 141
32 | 390 245 298 270 228
64 | 774 327 430 349 274
128 | 1542 | 372 546 441 395
256 | 3078 | 594 985 800 720
512 | 6150 | 1108 1821 1557 1408

@ many (almost) multiple eigenvalues
@ real eigenvalues for V < V.

@ complex eigenvalues for V > V.
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Block diagonal preconditioner

[ A B _[A o0
c[a ) e[3 s

e A=A S=S5
Ng | Ngog | OV | 0.5V | 1.5V | 5V
16 | 198 1 3 7 9
32 | 390 1 3 7 9
64 774 1 3 8 10
128 | 1542 1 3 7 10
256 | 3078 | 1 3 8 10
512 | 6150 | 1 3 7 10
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Block diagonal preconditioner

[ A B _[A o0
c[a ) e[3 s

e A=A S=S5
Ng | Ngog | OV | 0.5V | 1.5V | 5V
16 | 198 1 3 7 9
32 | 390 1 3 7 9
64 774 1 3 8 10
128 | 1542 1 3 7 10
256 | 3078 | 1 3 8 10
512 | 6150 | 1 3 7 10

@ A=A, S = C: results exactly the same
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Approximation for A

- o1
NCh

1 1 1 1 7
NCIz NQ3 Nq4 Nq5

2 \/2 2 2 2
qu NCIz NQ?, Nq4 Nq5

_ 3 3 A3 3 3
A= qu qu NQ3 Nq4 Nq5

4 4 4 N4 4
qu NCIz NQ?, Nq4 Nq5

5 5 5 5 \/5
L qu NCIz NQ?, Nq4 Nq5 -

Ni = K +2aM + N,

A = bl_diag(K)
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GMRES iteration counts

A = bl_diag(K), S = C
Net | Negor | OV [ 05V [ 15V | BV
16 | 198 79| 78 | 93 |107
32 (390 | 99 | 97 | 117 | 132
64 | 774 | 112 | 117 | 125 | 139
128 | 1542 | 119 | 118 | 127 | 140
256 | 3078 | 121 | 120 | 126 | 140
512 | 6150 | 122 | 121 | 128 | 140
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GMRES iteration counts

A = bl_diag(K), S = C
Net | Negor | OV [ 05V [ 15V | BV
16 | 198 79| 78 | 93 |107
32 (390 | 99 | 97 | 117 | 132
64 | 774 | 112 | 117 | 125 | 139
128 | 1542 | 119 | 118 | 127 | 140
256 | 3078 | 121 | 120 | 126 | 140
512 | 6150 | 122 | 121 | 128 | 140

A = bl_diag(K), S = K
Net | Negor | OV [ 05V [ 15V | BV
16 | 198 | 79 | 82 | 100 | 105
32 | 390 | 99 | 100 | 118 | 126
64 | 774 | 112 | 111 | 121 | 131
128 | 1542 | 118 | 118 | 121 | 132
256 | 3078 | 121 | 120 | 123 | 133
512 | 6150 | 122 | 121 | 123 | 132
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One dimension

75 5
X V=0 x V=0
10 V=05 ‘71O v=0.5
O V=15 O V=15
5T % v=3 Tl v=3
\xl 6 € 2F
o o
: o 1l
_8’ 55 2 1
5 0
45 1
4 2 |
9.5 10 105 1 115 12 125 13 135 95 10 105 1" 115 12 125 13 135
log ,(N) log ,(N)
iterations time(sec)

GMRES, preconditioned GMRES

@ uniform hierarchical finite element grid
@ from 774 to 9222 degrees of freedom
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Two dimensions

oo

w200

<<<<

NN
®=so0
oo

<<<<

log, (k)

-4
1" 15 12 125 18 185 14 145 1 s 12 25 18 135 14 145

log,(N) log,(N)

iterations time(sec)
preconditioned GMRES
@ hierarchic finite elements of degree two

@ unstructured grids of triangles
@ from 2610 to 19374 degrees of freedom
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Three dimensions

V=0
V=05 5|
7| V=15
V=3 4
— — 2
x 6 x
= =,
i=2 {2
O 55 Ke]
.
5 1 V=0
V=0.5
N V=15
-
. v=3
s 5 5 T s s s i3 s 1 s W5
Iogg(N) Iogz(N)
iterations time(sec)

preconditioned GMRES

@ unstructured grids of tetrahedra
@ 6306 and 26274 degrees of freedom
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Summary of Problem 2

@ Q-tensor models of liquid crystals lead to complicated
algebraic equations.

@ Nonlinearities involved make it difficult to identify dominant
terms, with many conflicting issues involving singularity,
indefiniteness, lack of symmetry. ..

@ Block preconditioner using the stiffness matrix performs well
on uniform nodal and hierarchical meshes.

o Convergence independent of the mesh parameter.
o Cheap to implement using factorisation.

@ Would be nice to have some theory!
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Coupled flow and orientation

@ More and more applications in e-readers, moving colour
displays, digital ink. ..

@ Require numerical models linking molecular orientation and
flow.

Photographs by Israel Lazo, Kent State University.
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Q-tensor Model

@ tensor order parameter (symmetric and traceless)

Q:z(u@u)z(u@u—%l)

@ material and co-rotational time derivatives

o=+ vap,  a-0-2Wg

o flow with velocity v

@ symmetric and skew parts of the velocity gradient

D= %(w +(Vo)"), W= %(W —(Vv)T)
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Governing Equations

@ dissipation R = R(COJ,Q, D)

@ stress tensor

ow  OR OR OR
T=——pl-VQO o=+ +Q —

ovQ JdD 36 aé Q

@ coupled equations for alignment and flow:

a—W—div—aW +8—R—0
0Q ovQ - aq
pv =divT

Sonnet and Virga Dissipative Ordered Fluids: Theories for Liquid Crystals, Springer 2012
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Special Case

o free energy based on Landau-deGennes potential

\/6

b= (T)t Q°- =BtrQd+ = C(trQ2)

@ coupled equations

Q=AQ - 9¢/0Q —TuD
Vp — Av=divF
F=Bf {1 [Q(AQ) - (AQ)Q — VQ © VQ] + AQ — 9$/0Q}

@ the backflow parameter Bf measures the impact of the
orientation on the flow;

@ the tumbling parameter Tu measures the relative strength of
problem viscosities.
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Iterative Solution Strategy

@ Decoupled solver:

@ For a given orientation field Q, solve Stokes equation with
f = divF as a body force.

@ Use the obtained flow field to compute one time step in a
discretised version of the orientation equation.

@ Repeat with the new orientation field.

@ Solution strategy

o Orientation equation: finite difference scheme with explicit
Euler time discretisation

o Stokes equation: IFISS Stokes solver with multigrid
preconditioning
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Commercial break. . .

IFISS

Incompressible Flow & lterative Solver Software

@ open-source software package run under MATLAB or GNU
OCTAVE written with Howard Elman (Maryland) and David
Silvester (Manchester)

@ download from

www.manchester.ac.uk/ifiss
www.cs.umd.edu/~elman/ifiss

Alison Ramage, University of Strathclyde Saddle-point Problems in Liquid Crystal Modelling



Lid Driven Cavity

v=10e,

-
L L
L=28
Re = H:smo—ﬁ
Ca
1%
De ~ — =12
¢ L
Er ﬂ—SO
Ly

Saddle-point Problems in Liquid Crystal Modelling

Alison Ramage, University of Strathclyde



Initial Orientation and Flow Field

Streamlines: uniform

IS
PR,
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Flow Field Difference

Streamlines: uniform
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Out of Plane Orientation

v=15e,

>
L L
L =16
Re = ﬂ:2.4x10—5
Ca
v
De ~ — =09
¢ i
o~ WYL _ou
Ly
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t of Plane Force

0.025
force 0.02
0.015

0.025 0.01
0.005

-0.005
-0.01
-0.015
-0.02
-0.025

Saddle-point Problems in Liquid Crystal Modelling

Alison Ramage, University of Strathclyde



@ Linear algebra subproblems often cause bottlenecks in
computational models in terms of memory and CPU time.

@ Spending some time and effort on developing efficient
preconditioned iterative solvers can be beneficial.

@ Three examples presented today:

@ For director models with unit vector constraints, systems can
be solved efficiently using a preconditioned nullspace method
(which should be efficient in 1D, 2D and 3D).

@ For Q-tensor models, a block preconditioner using the stiffness
matrix shows promise: it is cheap to implement and may lead
to convergence independent of meshsize.

o For coupled flow-orientation models, important out-of-plane
effects have been quantified and identified.

@ Many interesting applications and challenges out there!
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